Distribution problems in Dedekind domains and submeasures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-12

AUTHORS

M. Pasteka, R. F. Tichy

ABSTRACT

This paper is a continuation of[PAS], where uniformly distributed sequences in Dedekind domains were investigated. In the present article the concepts of well-distribution and complete distribution are studied. Furthermore general matrix summation methods are considered.

PAGES

191-206

References to SciGraph publications

  • 1916-09. Über die Gleichverteilung von Zahlen mod. Eins in MATHEMATISCHE ANNALEN
  • 1984-12. A general rearrangement theorem for sequences in ARCHIV DER MATHEMATIK
  • 1986-09. The Borel property for simple Riesz means in MONATSHEFTE FÜR MATHEMATIK
  • 1956-03. Folgen auf kompakten Räumen in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02834520

    DOI

    http://dx.doi.org/10.1007/bf02834520

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085996612


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Slovak Academy of Sciences, Stefanikova 49, SK-814 73, Bratislava, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.419303.c", 
              "name": [
                "Slovak Academy of Sciences, Stefanikova 49, SK-814 73, Bratislava, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pasteka", 
            "givenName": "M.", 
            "id": "sg:person.01257672021.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257672021.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institut f\u00fcr Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tichy", 
            "givenName": "R. F.", 
            "id": "sg:person.015312676677.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf03374560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050440941", 
              "https://doi.org/10.1007/bf03374560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01475864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026414633", 
              "https://doi.org/10.1007/bf01475864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01294600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021656999", 
              "https://doi.org/10.1007/bf01294600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01190956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010130231", 
              "https://doi.org/10.1007/bf01190956"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-12", 
        "datePublishedReg": "1994-12-01", 
        "description": "This paper is a continuation of[PAS], where uniformly distributed sequences in Dedekind domains were investigated. In the present article the concepts of well-distribution and complete distribution are studied. Furthermore general matrix summation methods are considered.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02834520", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136062", 
            "issn": [
              "0430-3202", 
              "1827-1510"
            ], 
            "name": "Annali dell' Universit\u00e0 di Ferrara", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "sequence", 
          "domain", 
          "summation method", 
          "distribution problem", 
          "present article", 
          "complete distribution", 
          "distribution", 
          "method", 
          "concept", 
          "problem", 
          "continuation", 
          "article", 
          "paper", 
          "Dedekind domain", 
          "general matrix summation methods", 
          "matrix summation methods", 
          "submeasures"
        ], 
        "name": "Distribution problems in Dedekind domains and submeasures", 
        "pagination": "191-206", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085996612"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02834520"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02834520", 
          "https://app.dimensions.ai/details/publication/pub.1085996612"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_225.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02834520"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02834520'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02834520'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02834520'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02834520'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      22 PREDICATES      45 URIs      34 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02834520 schema:about anzsrc-for:01
    2 schema:author N8505c59cc63444008819109616e9d5c8
    3 schema:citation sg:pub.10.1007/bf01190956
    4 sg:pub.10.1007/bf01294600
    5 sg:pub.10.1007/bf01475864
    6 sg:pub.10.1007/bf03374560
    7 schema:datePublished 1994-12
    8 schema:datePublishedReg 1994-12-01
    9 schema:description This paper is a continuation of[PAS], where uniformly distributed sequences in Dedekind domains were investigated. In the present article the concepts of well-distribution and complete distribution are studied. Furthermore general matrix summation methods are considered.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf Nd4cef01a94894656b12712fb0a69a1fc
    14 Nea64320d19aa4cddab9403026bb920de
    15 sg:journal.1136062
    16 schema:keywords Dedekind domain
    17 article
    18 complete distribution
    19 concept
    20 continuation
    21 distribution
    22 distribution problem
    23 domain
    24 general matrix summation methods
    25 matrix summation methods
    26 method
    27 paper
    28 present article
    29 problem
    30 sequence
    31 submeasures
    32 summation method
    33 schema:name Distribution problems in Dedekind domains and submeasures
    34 schema:pagination 191-206
    35 schema:productId N60f9c39d5c224bc989dbf0aa8388b344
    36 Nab5ece64889e46be9b8dc38c8a4f15ac
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085996612
    38 https://doi.org/10.1007/bf02834520
    39 schema:sdDatePublished 2021-12-01T19:07
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N97557905acba48de8414d15dc3591ec2
    42 schema:url https://doi.org/10.1007/bf02834520
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N20676f42a658477d9cf8a1bf44709e49 rdf:first sg:person.015312676677.43
    47 rdf:rest rdf:nil
    48 N60f9c39d5c224bc989dbf0aa8388b344 schema:name doi
    49 schema:value 10.1007/bf02834520
    50 rdf:type schema:PropertyValue
    51 N8505c59cc63444008819109616e9d5c8 rdf:first sg:person.01257672021.71
    52 rdf:rest N20676f42a658477d9cf8a1bf44709e49
    53 N97557905acba48de8414d15dc3591ec2 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 Nab5ece64889e46be9b8dc38c8a4f15ac schema:name dimensions_id
    56 schema:value pub.1085996612
    57 rdf:type schema:PropertyValue
    58 Nd4cef01a94894656b12712fb0a69a1fc schema:issueNumber 1
    59 rdf:type schema:PublicationIssue
    60 Nea64320d19aa4cddab9403026bb920de schema:volumeNumber 40
    61 rdf:type schema:PublicationVolume
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1136062 schema:issn 0430-3202
    66 1827-1510
    67 schema:name Annali dell' Università di Ferrara
    68 rdf:type schema:Periodical
    69 sg:person.01257672021.71 schema:affiliation grid-institutes:grid.419303.c
    70 schema:familyName Pasteka
    71 schema:givenName M.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257672021.71
    73 rdf:type schema:Person
    74 sg:person.015312676677.43 schema:affiliation grid-institutes:grid.410413.3
    75 schema:familyName Tichy
    76 schema:givenName R. F.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
    78 rdf:type schema:Person
    79 sg:pub.10.1007/bf01190956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010130231
    80 https://doi.org/10.1007/bf01190956
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01294600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021656999
    83 https://doi.org/10.1007/bf01294600
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf01475864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026414633
    86 https://doi.org/10.1007/bf01475864
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf03374560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050440941
    89 https://doi.org/10.1007/bf03374560
    90 rdf:type schema:CreativeWork
    91 grid-institutes:grid.410413.3 schema:alternateName Institut für Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria
    92 schema:name Institut für Mathematik, TU Graz, Steyrergasse 30, A-8010, Graz, Austria
    93 rdf:type schema:Organization
    94 grid-institutes:grid.419303.c schema:alternateName Slovak Academy of Sciences, Stefanikova 49, SK-814 73, Bratislava, Slovakia
    95 schema:name Slovak Academy of Sciences, Stefanikova 49, SK-814 73, Bratislava, Slovakia
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...