Schrödinger operators on the half line: Resolvent expansions and the Fermi golden rule at thresholds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-11

AUTHORS

Arne Jensen, Gheorghe Nenciu

ABSTRACT

We consider Schrodinger operatorsH = - d2 /dr2 +V onL2([0, ∞)) with the Dirichlet boundary condition. The potentialV may be local or non-local, with polynomial decay at infinity. The point zero in the spectrum ofH is classified, and asymptotic expansions of the resolvent around zero are obtained, with explicit expressions for the leading coefficients. These results are applied to the perturbation of an eigenvalue embedded at zero, and the corresponding modified form of the Fermi golden rule. More... »

PAGES

375-392

References to SciGraph publications

  • 2005-09-20. The Fermi Golden Rule and its Form at Thresholds in Odd Dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1982-06. The low energy scattering for slowly decreasing potentials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1990-01. Quantum mechanical resonance and limiting absorption: The many body problem in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02829696

    DOI

    http://dx.doi.org/10.1007/bf02829696

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052832448


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK-9220, Aalborg \u00d8, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5117.2", 
              "name": [
                "Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK-9220, Aalborg \u00d8, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Arne", 
            "id": "sg:person.015240561701.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics \u201cSimion Stoilow\u201d of the Romanian Academy, P. O. Box 1-764, RO-014700, Bucharest, Romania", 
              "id": "http://www.grid.ac/institutes/grid.418333.e", 
              "name": [
                "Department of Theoretical Physics, University of Bucharest, P. O. Box MG11, 76900, Bucharest, Romania", 
                "Institute of Mathematics \u201cSimion Stoilow\u201d of the Romanian Academy, P. O. Box 1-764, RO-014700, Bucharest, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nenciu", 
            "givenName": "Gheorghe", 
            "id": "sg:person.015403713705.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02125700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029849640", 
              "https://doi.org/10.1007/bf02125700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1428-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019860762", 
              "https://doi.org/10.1007/s00220-005-1428-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01254456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011750929", 
              "https://doi.org/10.1007/bf01254456"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-11", 
        "datePublishedReg": "2006-11-01", 
        "description": "We consider Schrodinger operatorsH = - d2 /dr2 +V onL2([0, \u221e)) with the Dirichlet boundary condition. The potentialV may be local or non-local, with polynomial decay at infinity. The point zero in the spectrum ofH is classified, and asymptotic expansions of the resolvent around zero are obtained, with explicit expressions for the leading coefficients. These results are applied to the perturbation of an eigenvalue embedded at zero, and the corresponding modified form of the Fermi golden rule.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02829696", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1320093", 
            "issn": [
              "0253-4142", 
              "0973-7685"
            ], 
            "name": "Proceedings - Mathematical Sciences", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "116"
          }
        ], 
        "keywords": [
          "rules", 
          "operators", 
          "polynomial decay", 
          "results", 
          "threshold", 
          "zeros", 
          "golden rule", 
          "eigenvalues", 
          "form", 
          "explicit expressions", 
          "coefficient", 
          "lines", 
          "expansion", 
          "Dirichlet boundary conditions", 
          "conditions", 
          "infinity", 
          "boundary conditions", 
          "perturbations", 
          "resolvent", 
          "point zero", 
          "expression", 
          "half line", 
          "asymptotic expansion", 
          "decay", 
          "ofH", 
          "resolvent expansion", 
          "potentialV", 
          "spectrum ofH", 
          "Fermi's golden rule", 
          "Schr\u00f6dinger operators", 
          "D2", 
          "Schrodinger operatorsH", 
          "operatorsH"
        ], 
        "name": "Schr\u00f6dinger operators on the half line: Resolvent expansions and the Fermi golden rule at thresholds", 
        "pagination": "375-392", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052832448"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02829696"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02829696", 
          "https://app.dimensions.ai/details/publication/pub.1052832448"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_417.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02829696"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02829696'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02829696'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02829696'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02829696'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      22 PREDICATES      62 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02829696 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N41d2a6373fff420ca67d43849638be93
    4 schema:citation sg:pub.10.1007/bf01254456
    5 sg:pub.10.1007/bf02125700
    6 sg:pub.10.1007/s00220-005-1428-0
    7 schema:datePublished 2006-11
    8 schema:datePublishedReg 2006-11-01
    9 schema:description We consider Schrodinger operatorsH = - d2 /dr2 +V onL2([0, ∞)) with the Dirichlet boundary condition. The potentialV may be local or non-local, with polynomial decay at infinity. The point zero in the spectrum ofH is classified, and asymptotic expansions of the resolvent around zero are obtained, with explicit expressions for the leading coefficients. These results are applied to the perturbation of an eigenvalue embedded at zero, and the corresponding modified form of the Fermi golden rule.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N4fad1611d88c4b7b949daecab4c15092
    14 N820a16f3b3e74faba1c8381421b1a50a
    15 sg:journal.1320093
    16 schema:keywords D2
    17 Dirichlet boundary conditions
    18 Fermi's golden rule
    19 Schrodinger operatorsH
    20 Schrödinger operators
    21 asymptotic expansion
    22 boundary conditions
    23 coefficient
    24 conditions
    25 decay
    26 eigenvalues
    27 expansion
    28 explicit expressions
    29 expression
    30 form
    31 golden rule
    32 half line
    33 infinity
    34 lines
    35 ofH
    36 operators
    37 operatorsH
    38 perturbations
    39 point zero
    40 polynomial decay
    41 potentialV
    42 resolvent
    43 resolvent expansion
    44 results
    45 rules
    46 spectrum ofH
    47 threshold
    48 zeros
    49 schema:name Schrödinger operators on the half line: Resolvent expansions and the Fermi golden rule at thresholds
    50 schema:pagination 375-392
    51 schema:productId N0e6d9865612d4e678ce004a1c66a4366
    52 Need57623dc4c4224b1b16c0f84fb3a41
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052832448
    54 https://doi.org/10.1007/bf02829696
    55 schema:sdDatePublished 2022-01-01T18:15
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N18e7d1efb20b4c13bd92e0e27b4a8118
    58 schema:url https://doi.org/10.1007/bf02829696
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N0e6d9865612d4e678ce004a1c66a4366 schema:name doi
    63 schema:value 10.1007/bf02829696
    64 rdf:type schema:PropertyValue
    65 N18e7d1efb20b4c13bd92e0e27b4a8118 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N41d2a6373fff420ca67d43849638be93 rdf:first sg:person.015240561701.11
    68 rdf:rest N9e72623e7c874e289637a5188aa7dfc1
    69 N4fad1611d88c4b7b949daecab4c15092 schema:issueNumber 4
    70 rdf:type schema:PublicationIssue
    71 N820a16f3b3e74faba1c8381421b1a50a schema:volumeNumber 116
    72 rdf:type schema:PublicationVolume
    73 N9e72623e7c874e289637a5188aa7dfc1 rdf:first sg:person.015403713705.47
    74 rdf:rest rdf:nil
    75 Need57623dc4c4224b1b16c0f84fb3a41 schema:name dimensions_id
    76 schema:value pub.1052832448
    77 rdf:type schema:PropertyValue
    78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Mathematical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Pure Mathematics
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1320093 schema:issn 0253-4142
    85 0973-7685
    86 schema:name Proceedings - Mathematical Sciences
    87 schema:publisher Springer Nature
    88 rdf:type schema:Periodical
    89 sg:person.015240561701.11 schema:affiliation grid-institutes:grid.5117.2
    90 schema:familyName Jensen
    91 schema:givenName Arne
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
    93 rdf:type schema:Person
    94 sg:person.015403713705.47 schema:affiliation grid-institutes:grid.418333.e
    95 schema:familyName Nenciu
    96 schema:givenName Gheorghe
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf01254456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011750929
    100 https://doi.org/10.1007/bf01254456
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf02125700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029849640
    103 https://doi.org/10.1007/bf02125700
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s00220-005-1428-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019860762
    106 https://doi.org/10.1007/s00220-005-1428-0
    107 rdf:type schema:CreativeWork
    108 grid-institutes:grid.418333.e schema:alternateName Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P. O. Box 1-764, RO-014700, Bucharest, Romania
    109 schema:name Department of Theoretical Physics, University of Bucharest, P. O. Box MG11, 76900, Bucharest, Romania
    110 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P. O. Box 1-764, RO-014700, Bucharest, Romania
    111 rdf:type schema:Organization
    112 grid-institutes:grid.5117.2 schema:alternateName Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK-9220, Aalborg Ø, Denmark
    113 schema:name Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK-9220, Aalborg Ø, Denmark
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...