New criteria to identify spectrum View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-05

AUTHORS

A. Jensen, M. Krishna

ABSTRACT

In this paper we give some new criteria for identifying the components of a probability measure, in its Lebesgue decomposition. This enables us to give new criteria to identify spectral types of self-adjoint operators on Hilbert spaces, especially those of interest.

PAGES

217-226

References to SciGraph publications

  • 1991-09. Wavelet expansions of fractal measures in THE JOURNAL OF GEOMETRIC ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02829628

    DOI

    http://dx.doi.org/10.1007/bf02829628

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006604434


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences and MaPhySto, Aalborg University, Fr. Bajers Vej 7G, DK-9220, Aalborg \u00d8, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5117.2", 
              "name": [
                "Department of Mathematical Sciences and MaPhySto, Aalborg University, Fr. Bajers Vej 7G, DK-9220, Aalborg \u00d8, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "A.", 
            "id": "sg:person.015240561701.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematical Sciences, 600 113, Taramani, Chennai, India", 
              "id": "http://www.grid.ac/institutes/grid.462414.1", 
              "name": [
                "Department of Mathematical Sciences and MaPhySto, Aalborg University, Fr. Bajers Vej 7G, DK-9220, Aalborg \u00d8, Denmark", 
                "Institute of Mathematical Sciences, 600 113, Taramani, Chennai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krishna", 
            "givenName": "M.", 
            "id": "sg:person.010166535320.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010166535320.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02921305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008591338", 
              "https://doi.org/10.1007/bf02921305"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-05", 
        "datePublishedReg": "2005-05-01", 
        "description": "In this paper we give some new criteria for identifying the components of a probability measure, in its Lebesgue decomposition. This enables us to give new criteria to identify spectral types of self-adjoint operators on Hilbert spaces, especially those of interest.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02829628", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1320093", 
            "issn": [
              "0253-4142", 
              "0973-7685"
            ], 
            "name": "Proceedings - Mathematical Sciences", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "115"
          }
        ], 
        "keywords": [
          "new criterion", 
          "probability measure", 
          "measures", 
          "Lebesgue decomposition", 
          "self-adjoint operators", 
          "operators", 
          "Hilbert space", 
          "space", 
          "paper", 
          "criteria", 
          "components", 
          "decomposition", 
          "spectral type", 
          "types", 
          "interest", 
          "spectra"
        ], 
        "name": "New criteria to identify spectrum", 
        "pagination": "217-226", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006604434"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02829628"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02829628", 
          "https://app.dimensions.ai/details/publication/pub.1006604434"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_404.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02829628"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02829628'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02829628'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02829628'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02829628'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      22 PREDICATES      43 URIs      34 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02829628 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd55c698f22df4556b2335b09a1f65e44
    4 schema:citation sg:pub.10.1007/bf02921305
    5 schema:datePublished 2005-05
    6 schema:datePublishedReg 2005-05-01
    7 schema:description In this paper we give some new criteria for identifying the components of a probability measure, in its Lebesgue decomposition. This enables us to give new criteria to identify spectral types of self-adjoint operators on Hilbert spaces, especially those of interest.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N6cfc7aa72fc24bc7bbe3ea34a4926b19
    12 N9e897250ae174e4181cae31f3504285a
    13 sg:journal.1320093
    14 schema:keywords Hilbert space
    15 Lebesgue decomposition
    16 components
    17 criteria
    18 decomposition
    19 interest
    20 measures
    21 new criterion
    22 operators
    23 paper
    24 probability measure
    25 self-adjoint operators
    26 space
    27 spectra
    28 spectral type
    29 types
    30 schema:name New criteria to identify spectrum
    31 schema:pagination 217-226
    32 schema:productId Nca2c59512ca148118528dfce11b05064
    33 Nf839366ae92f437cb820b61021b4528a
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006604434
    35 https://doi.org/10.1007/bf02829628
    36 schema:sdDatePublished 2022-01-01T18:14
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N9ee4fc5a48284f099e1a5cabea4168df
    39 schema:url https://doi.org/10.1007/bf02829628
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N64ee01829a3048a2a617c0930a201282 rdf:first sg:person.010166535320.13
    44 rdf:rest rdf:nil
    45 N6cfc7aa72fc24bc7bbe3ea34a4926b19 schema:issueNumber 2
    46 rdf:type schema:PublicationIssue
    47 N9e897250ae174e4181cae31f3504285a schema:volumeNumber 115
    48 rdf:type schema:PublicationVolume
    49 N9ee4fc5a48284f099e1a5cabea4168df schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 Nca2c59512ca148118528dfce11b05064 schema:name dimensions_id
    52 schema:value pub.1006604434
    53 rdf:type schema:PropertyValue
    54 Nd55c698f22df4556b2335b09a1f65e44 rdf:first sg:person.015240561701.11
    55 rdf:rest N64ee01829a3048a2a617c0930a201282
    56 Nf839366ae92f437cb820b61021b4528a schema:name doi
    57 schema:value 10.1007/bf02829628
    58 rdf:type schema:PropertyValue
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Pure Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1320093 schema:issn 0253-4142
    66 0973-7685
    67 schema:name Proceedings - Mathematical Sciences
    68 schema:publisher Springer Nature
    69 rdf:type schema:Periodical
    70 sg:person.010166535320.13 schema:affiliation grid-institutes:grid.462414.1
    71 schema:familyName Krishna
    72 schema:givenName M.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010166535320.13
    74 rdf:type schema:Person
    75 sg:person.015240561701.11 schema:affiliation grid-institutes:grid.5117.2
    76 schema:familyName Jensen
    77 schema:givenName A.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf02921305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008591338
    81 https://doi.org/10.1007/bf02921305
    82 rdf:type schema:CreativeWork
    83 grid-institutes:grid.462414.1 schema:alternateName Institute of Mathematical Sciences, 600 113, Taramani, Chennai, India
    84 schema:name Department of Mathematical Sciences and MaPhySto, Aalborg University, Fr. Bajers Vej 7G, DK-9220, Aalborg Ø, Denmark
    85 Institute of Mathematical Sciences, 600 113, Taramani, Chennai, India
    86 rdf:type schema:Organization
    87 grid-institutes:grid.5117.2 schema:alternateName Department of Mathematical Sciences and MaPhySto, Aalborg University, Fr. Bajers Vej 7G, DK-9220, Aalborg Ø, Denmark
    88 schema:name Department of Mathematical Sciences and MaPhySto, Aalborg University, Fr. Bajers Vej 7G, DK-9220, Aalborg Ø, Denmark
    89 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...