Probabilistic representations of solutions to the heat equation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-08

AUTHORS

B. Rajeev, S. Thangavelu

ABSTRACT

In this paper we provide a new (probabilistic) proof of a classical result in partial differential equations, viz. if ϕ is a tempered distribution, then the solution of the heat equation for the Laplacian, with initial condition ϕ, is given by the convolution of ϕ with the heat kernel (Gaussian density). Our results also extend the probabilistic representation of solutions of the heat equation to initial conditions that are arbitrary tempered distributions. More... »

PAGES

321-332

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02829609

DOI

http://dx.doi.org/10.1007/bf02829609

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005568891


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Indian Statistical Institute, R.V. College Post, 560 059, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajeev", 
        "givenName": "B.", 
        "id": "sg:person.014733667677.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733667677.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Indian Statistical Institute, R.V. College Post, 560 059, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thangavelu", 
        "givenName": "S.", 
        "id": "sg:person.011431543043.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011431543043.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-44671-2_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013068276", 
          "https://doi.org/10.1007/978-3-540-44671-2_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400881598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051761795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110845563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096921236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556616"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-08", 
    "datePublishedReg": "2003-08-01", 
    "description": "In this paper we provide a new (probabilistic) proof of a classical result in partial differential equations, viz. if \u03d5 is a tempered distribution, then the solution of the heat equation for the Laplacian, with initial condition \u03d5, is given by the convolution of \u03d5 with the heat kernel (Gaussian density). Our results also extend the probabilistic representation of solutions of the heat equation to initial conditions that are arbitrary tempered distributions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02829609", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1320093", 
        "issn": [
          "2008-1359", 
          "2251-7456"
        ], 
        "name": "Proceedings - Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "113"
      }
    ], 
    "name": "Probabilistic representations of solutions to the heat equation", 
    "pagination": "321-332", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a884bca670190d3cb5e839efe6843e99ce70a597669aa44b48f2308e913496d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02829609"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005568891"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02829609", 
      "https://app.dimensions.ai/details/publication/pub.1005568891"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02829609"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02829609'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02829609'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02829609'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02829609'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02829609 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N531e9686582a43dd8c71695cee8b2ab0
4 schema:citation sg:pub.10.1007/978-3-540-44671-2_25
5 https://doi.org/10.1137/1.9781611970234
6 https://doi.org/10.1515/9781400881598
7 https://doi.org/10.1515/9783110845563
8 schema:datePublished 2003-08
9 schema:datePublishedReg 2003-08-01
10 schema:description In this paper we provide a new (probabilistic) proof of a classical result in partial differential equations, viz. if ϕ is a tempered distribution, then the solution of the heat equation for the Laplacian, with initial condition ϕ, is given by the convolution of ϕ with the heat kernel (Gaussian density). Our results also extend the probabilistic representation of solutions of the heat equation to initial conditions that are arbitrary tempered distributions.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N7a42a3d727c545b1b3ec5e19fd37621d
15 Nf43954264750435f9a45b11cfec36c62
16 sg:journal.1320093
17 schema:name Probabilistic representations of solutions to the heat equation
18 schema:pagination 321-332
19 schema:productId N04576dfe0af6415687cd8a5701bcbd8e
20 N9a2484e733214368bc7339acfca4c061
21 N9b29ad5c3fe844b4b2b6401a4000365b
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005568891
23 https://doi.org/10.1007/bf02829609
24 schema:sdDatePublished 2019-04-10T14:54
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N3fbf99052ed34fed96314206599d887b
27 schema:url http://link.springer.com/10.1007/BF02829609
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N04576dfe0af6415687cd8a5701bcbd8e schema:name doi
32 schema:value 10.1007/bf02829609
33 rdf:type schema:PropertyValue
34 N3fbf99052ed34fed96314206599d887b schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N531e9686582a43dd8c71695cee8b2ab0 rdf:first sg:person.014733667677.87
37 rdf:rest N8348bfc0bbad4f878cd0537f413aba90
38 N7a42a3d727c545b1b3ec5e19fd37621d schema:volumeNumber 113
39 rdf:type schema:PublicationVolume
40 N8348bfc0bbad4f878cd0537f413aba90 rdf:first sg:person.011431543043.16
41 rdf:rest rdf:nil
42 N9a2484e733214368bc7339acfca4c061 schema:name readcube_id
43 schema:value 1a884bca670190d3cb5e839efe6843e99ce70a597669aa44b48f2308e913496d
44 rdf:type schema:PropertyValue
45 N9b29ad5c3fe844b4b2b6401a4000365b schema:name dimensions_id
46 schema:value pub.1005568891
47 rdf:type schema:PropertyValue
48 Nf43954264750435f9a45b11cfec36c62 schema:issueNumber 3
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1320093 schema:issn 2008-1359
57 2251-7456
58 schema:name Proceedings - Mathematical Sciences
59 rdf:type schema:Periodical
60 sg:person.011431543043.16 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
61 schema:familyName Thangavelu
62 schema:givenName S.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011431543043.16
64 rdf:type schema:Person
65 sg:person.014733667677.87 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
66 schema:familyName Rajeev
67 schema:givenName B.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733667677.87
69 rdf:type schema:Person
70 sg:pub.10.1007/978-3-540-44671-2_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013068276
71 https://doi.org/10.1007/978-3-540-44671-2_25
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1137/1.9781611970234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556616
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1515/9781400881598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051761795
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1515/9783110845563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096921236
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.39953.35 schema:alternateName Indian Statistical Institute
80 schema:name Indian Statistical Institute, R.V. College Post, 560 059, Bangalore, India
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...