An extension of the Poincaré-Fermi theorem on the nonexistence of invariant manifolds in nearly integrable Hamiltonian systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-12

AUTHORS

G. Benettin, G. Ferrari, L. Galgani, A. Giorgilli

ABSTRACT

For an autonomous nearly integrable Hamiltonian system ofn degrees of freedom withn > 1 it was shown by Poincaré that, in general, no integrals of motion exist which are independent of the Hamiltonian. This result was generalized by Fermi, who showed that in general not even single invariant (2n - 1)-dimensional manifolds exist, apart from constant-energy surfaces. On the other hand, the Kolmogorov-Amold-Moser theorem guarantees the existence ofn-dimensional invariant tori. In this paper we discuss the possible existence of invariant manifolds of intermediate dimensions and conclude that, apart from very well-defined exceptions (namely, manifolds of the so-called resonant type and (n + 1)-dimensional families ofn tori with mutually proportional frequencies), in general such invariant manifolds do not exist. More... »

PAGES

137-148

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02829400

DOI

http://dx.doi.org/10.1007/bf02829400

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031772470


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Istituto di Fisica dell\u2019 Universit\u00e0, Padova", 
            "Unit\u00e0 di Padova, Gruppo Nationale Struttura della Materia del CNR, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benettin", 
        "givenName": "G.", 
        "id": "sg:person.014313317357.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Istituto di Fisica dell\u2019 Universit\u00e0, Parma"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrari", 
        "givenName": "G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Istituto di Fisica dell\u2019 Universit\u00e0, Milano", 
            "Istituto di Matematica dell\u2019 Universit\u00e0, Milano"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galgani", 
        "givenName": "L.", 
        "id": "sg:person.010346707747.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Istituto di Fisica dell\u2019 Universit\u00e0, Milano", 
            "Istituto di Matematica dell\u2019 Universit\u00e0, Milano"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgilli", 
        "givenName": "A.", 
        "id": "sg:person.010532704656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02721167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049441022", 
          "https://doi.org/10.1007/bf02721167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02959350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049901501", 
          "https://doi.org/10.1007/bf02959350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02959600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051891760", 
          "https://doi.org/10.1007/bf02959600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052187208", 
          "https://doi.org/10.1007/bf01399536"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-12", 
    "datePublishedReg": "1982-12-01", 
    "description": "For an autonomous nearly integrable Hamiltonian system ofn degrees of freedom withn > 1 it was shown by Poincar\u00e9 that, in general, no integrals of motion exist which are independent of the Hamiltonian. This result was generalized by Fermi, who showed that in general not even single invariant (2n - 1)-dimensional manifolds exist, apart from constant-energy surfaces. On the other hand, the Kolmogorov-Amold-Moser theorem guarantees the existence ofn-dimensional invariant tori. In this paper we discuss the possible existence of invariant manifolds of intermediate dimensions and conclude that, apart from very well-defined exceptions (namely, manifolds of the so-called resonant type and (n + 1)-dimensional families ofn tori with mutually proportional frequencies), in general such invariant manifolds do not exist.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02829400", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336108", 
        "issn": [
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1971-1996)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "name": "An extension of the Poincar\u00e9-Fermi theorem on the nonexistence of invariant manifolds in nearly integrable Hamiltonian systems", 
    "pagination": "137-148", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "975b91628a54cafb0423d75ecf624e84c63089a2e744021c33b34228c633e406"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02829400"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031772470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02829400", 
      "https://app.dimensions.ai/details/publication/pub.1031772470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02829400"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02829400'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02829400'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02829400'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02829400'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02829400 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbfca4688d7d44f1e8a2ddb035884dc55
4 schema:citation sg:pub.10.1007/bf01399536
5 sg:pub.10.1007/bf02721167
6 sg:pub.10.1007/bf02959350
7 sg:pub.10.1007/bf02959600
8 schema:datePublished 1982-12
9 schema:datePublishedReg 1982-12-01
10 schema:description For an autonomous nearly integrable Hamiltonian system ofn degrees of freedom withn > 1 it was shown by Poincaré that, in general, no integrals of motion exist which are independent of the Hamiltonian. This result was generalized by Fermi, who showed that in general not even single invariant (2n - 1)-dimensional manifolds exist, apart from constant-energy surfaces. On the other hand, the Kolmogorov-Amold-Moser theorem guarantees the existence ofn-dimensional invariant tori. In this paper we discuss the possible existence of invariant manifolds of intermediate dimensions and conclude that, apart from very well-defined exceptions (namely, manifolds of the so-called resonant type and (n + 1)-dimensional families ofn tori with mutually proportional frequencies), in general such invariant manifolds do not exist.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nc1950b174fc249e9ab16a7bbb166e830
15 Nda09845042d143da88ddb22739369cf2
16 sg:journal.1336108
17 schema:name An extension of the Poincaré-Fermi theorem on the nonexistence of invariant manifolds in nearly integrable Hamiltonian systems
18 schema:pagination 137-148
19 schema:productId N60853d38be1a4b3ba9319fc979082b82
20 N9416771831ea463ca78d1cd528ff0c83
21 Nc0e4b13de0e0462db6a913aeea849a61
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031772470
23 https://doi.org/10.1007/bf02829400
24 schema:sdDatePublished 2019-04-10T19:50
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nbe3c489098e24a2db76b71123d0eca42
27 schema:url http://link.springer.com/10.1007/BF02829400
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N56bb962632af40afb6a29c253859fec9 rdf:first sg:person.010532704656.30
32 rdf:rest rdf:nil
33 N60853d38be1a4b3ba9319fc979082b82 schema:name doi
34 schema:value 10.1007/bf02829400
35 rdf:type schema:PropertyValue
36 N8111e81306b94430bb463fe76f2d81b2 rdf:first N8c51f88fa15d4eccbcbdd78f4e7f1e80
37 rdf:rest Nb8851f5d33784c65b080a27ec5acb226
38 N8c51f88fa15d4eccbcbdd78f4e7f1e80 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
39 schema:familyName Ferrari
40 schema:givenName G.
41 rdf:type schema:Person
42 N9416771831ea463ca78d1cd528ff0c83 schema:name dimensions_id
43 schema:value pub.1031772470
44 rdf:type schema:PropertyValue
45 Nb8851f5d33784c65b080a27ec5acb226 rdf:first sg:person.010346707747.76
46 rdf:rest N56bb962632af40afb6a29c253859fec9
47 Nbe3c489098e24a2db76b71123d0eca42 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nbfca4688d7d44f1e8a2ddb035884dc55 rdf:first sg:person.014313317357.52
50 rdf:rest N8111e81306b94430bb463fe76f2d81b2
51 Nc0e4b13de0e0462db6a913aeea849a61 schema:name readcube_id
52 schema:value 975b91628a54cafb0423d75ecf624e84c63089a2e744021c33b34228c633e406
53 rdf:type schema:PropertyValue
54 Nc1950b174fc249e9ab16a7bbb166e830 schema:issueNumber 2
55 rdf:type schema:PublicationIssue
56 Nda09845042d143da88ddb22739369cf2 schema:volumeNumber 72
57 rdf:type schema:PublicationVolume
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1336108 schema:issn 1826-9877
65 schema:name Il Nuovo Cimento B (1971-1996)
66 rdf:type schema:Periodical
67 sg:person.010346707747.76 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
68 schema:familyName Galgani
69 schema:givenName L.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76
71 rdf:type schema:Person
72 sg:person.010532704656.30 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
73 schema:familyName Giorgilli
74 schema:givenName A.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
76 rdf:type schema:Person
77 sg:person.014313317357.52 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
78 schema:familyName Benettin
79 schema:givenName G.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52
81 rdf:type schema:Person
82 sg:pub.10.1007/bf01399536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052187208
83 https://doi.org/10.1007/bf01399536
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02721167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049441022
86 https://doi.org/10.1007/bf02721167
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf02959350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049901501
89 https://doi.org/10.1007/bf02959350
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02959600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051891760
92 https://doi.org/10.1007/bf02959600
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
95 schema:name Istituto di Fisica dell’ Università, Parma
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
98 schema:name Istituto di Fisica dell’ Università, Milano
99 Istituto di Matematica dell’ Università, Milano
100 rdf:type schema:Organization
101 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
102 schema:name Istituto di Fisica dell’ Università, Padova
103 Unità di Padova, Gruppo Nationale Struttura della Materia del CNR, Italia
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...