Wavelet analysis of precipitation variability in northern California, U.S.A. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-07

AUTHORS

Sangdan Kim

ABSTRACT

Precipitation temporal variability on 96 years is studied by the application of the wavelet transform to five precipitation series at locations in northern California, U.S.A. The wavelet transform spectra are computed for annual total precipitation and wetseas on precipitation of each record. Comparing two results based on annual and wet season data, all components appear seasonally dependent. Meanwhile, monotonic trends estimated by wavelet transform indicate wetting in the northern California precipitation data. According to the wavelet analysis, the spatial pattern of the precipitation field may have been changed since 1945, and the dominant period is about 16 years. In addition, the recent increasing precipitation trend in northern California can be interpreted as the coupled effect of the extremely long-period component and multi-decadal period components. More... »

PAGES

471-477

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02829169

DOI

http://dx.doi.org/10.1007/bf02829169

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024371134


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gyeonggi Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.496114.f", 
          "name": [
            "Department of Environmental Poliey, Gyeonggi Research Institute, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sangdan", 
        "id": "sg:person.016643340625.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016643340625.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/(sici)1099-1085(199802)12:2<233::aid-hyp573>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001104621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-4343(99)00036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007560589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007040050117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015441492", 
          "https://doi.org/10.1007/s007040050117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(02)00212-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021166144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(02)00212-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021166144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001jd900059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021607079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96gl00155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022081299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96jc00496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029033489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033293923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(1997)014<0554:uwtdt>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033790937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(00)00322-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040897184"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-07", 
    "datePublishedReg": "2004-07-01", 
    "description": "Precipitation temporal variability on 96 years is studied by the application of the wavelet transform to five precipitation series at locations in northern California, U.S.A. The wavelet transform spectra are computed for annual total precipitation and wetseas on precipitation of each record. Comparing two results based on annual and wet season data, all components appear seasonally dependent. Meanwhile, monotonic trends estimated by wavelet transform indicate wetting in the northern California precipitation data. According to the wavelet analysis, the spatial pattern of the precipitation field may have been changed since 1945, and the dominant period is about 16 years. In addition, the recent increasing precipitation trend in northern California can be interpreted as the coupled effect of the extremely long-period component and multi-decadal period components.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02829169", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136365", 
        "issn": [
          "1226-7988", 
          "1976-3808"
        ], 
        "name": "KSCE Journal of Civil Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Wavelet analysis of precipitation variability in northern California, U.S.A.", 
    "pagination": "471-477", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "741b5629578a53a9c24c36af3feb36a537a8c40c7added93f3417ec2d28909b0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02829169"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024371134"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02829169", 
      "https://app.dimensions.ai/details/publication/pub.1024371134"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02829169"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02829169'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02829169'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02829169'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02829169'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02829169 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N72700bd0416c4d7fb84ed9947c236b75
4 schema:citation sg:pub.10.1007/s007040050117
5 https://doi.org/10.1002/(sici)1099-1085(199802)12:2<233::aid-hyp573>3.0.co;2-3
6 https://doi.org/10.1016/s0022-1694(00)00322-x
7 https://doi.org/10.1016/s0022-1694(02)00212-3
8 https://doi.org/10.1016/s0278-4343(99)00036-9
9 https://doi.org/10.1029/2001jd900059
10 https://doi.org/10.1029/96gl00155
11 https://doi.org/10.1029/96jc00496
12 https://doi.org/10.1175/1520-0426(1997)014<0554:uwtdt>2.0.co;2
13 https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2
14 schema:datePublished 2004-07
15 schema:datePublishedReg 2004-07-01
16 schema:description Precipitation temporal variability on 96 years is studied by the application of the wavelet transform to five precipitation series at locations in northern California, U.S.A. The wavelet transform spectra are computed for annual total precipitation and wetseas on precipitation of each record. Comparing two results based on annual and wet season data, all components appear seasonally dependent. Meanwhile, monotonic trends estimated by wavelet transform indicate wetting in the northern California precipitation data. According to the wavelet analysis, the spatial pattern of the precipitation field may have been changed since 1945, and the dominant period is about 16 years. In addition, the recent increasing precipitation trend in northern California can be interpreted as the coupled effect of the extremely long-period component and multi-decadal period components.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N24cc3dfb25fa4f1780cf8277bfcb2186
21 Ndff9b518ef714084a4d2c7c57597ab47
22 sg:journal.1136365
23 schema:name Wavelet analysis of precipitation variability in northern California, U.S.A.
24 schema:pagination 471-477
25 schema:productId N0528b6ac11924d7b8721ccfb41d219d8
26 Nf28864e2d6b3438391cf52af2f9e37db
27 Nf6a62754262849e38b1af2359df54c97
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024371134
29 https://doi.org/10.1007/bf02829169
30 schema:sdDatePublished 2019-04-11T14:01
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Na21d3d485290400daac240d3d1fa9c7a
33 schema:url http://link.springer.com/10.1007/BF02829169
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0528b6ac11924d7b8721ccfb41d219d8 schema:name readcube_id
38 schema:value 741b5629578a53a9c24c36af3feb36a537a8c40c7added93f3417ec2d28909b0
39 rdf:type schema:PropertyValue
40 N24cc3dfb25fa4f1780cf8277bfcb2186 schema:issueNumber 4
41 rdf:type schema:PublicationIssue
42 N72700bd0416c4d7fb84ed9947c236b75 rdf:first sg:person.016643340625.55
43 rdf:rest rdf:nil
44 Na21d3d485290400daac240d3d1fa9c7a schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Ndff9b518ef714084a4d2c7c57597ab47 schema:volumeNumber 8
47 rdf:type schema:PublicationVolume
48 Nf28864e2d6b3438391cf52af2f9e37db schema:name dimensions_id
49 schema:value pub.1024371134
50 rdf:type schema:PropertyValue
51 Nf6a62754262849e38b1af2359df54c97 schema:name doi
52 schema:value 10.1007/bf02829169
53 rdf:type schema:PropertyValue
54 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
55 schema:name Engineering
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
58 schema:name Geomatic Engineering
59 rdf:type schema:DefinedTerm
60 sg:journal.1136365 schema:issn 1226-7988
61 1976-3808
62 schema:name KSCE Journal of Civil Engineering
63 rdf:type schema:Periodical
64 sg:person.016643340625.55 schema:affiliation https://www.grid.ac/institutes/grid.496114.f
65 schema:familyName Kim
66 schema:givenName Sangdan
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016643340625.55
68 rdf:type schema:Person
69 sg:pub.10.1007/s007040050117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015441492
70 https://doi.org/10.1007/s007040050117
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1002/(sici)1099-1085(199802)12:2<233::aid-hyp573>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001104621
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/s0022-1694(00)00322-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040897184
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/s0022-1694(02)00212-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021166144
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/s0278-4343(99)00036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007560589
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1029/2001jd900059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021607079
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1029/96gl00155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022081299
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1029/96jc00496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029033489
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1175/1520-0426(1997)014<0554:uwtdt>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033790937
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033293923
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.496114.f schema:alternateName Gyeonggi Research Institute
91 schema:name Department of Environmental Poliey, Gyeonggi Research Institute, Korea
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...