Genetic algorithm and simultaneous parameter estimation of the nested logit model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-01

AUTHORS

Si Kyun Ryoo, Chung Won Lee

ABSTRACT

The parameter estimation of the nested logit model is conducted either simultaneously or sequentially. This is well known fact that the sequential method yields less efficient estimates than the simultaneous one, although its estimates are consistent and asymptotically efficient. Due to the computational burden, however, the sequential estimation is more often employed. Recently, the genetic algorithm has received a great deal of attention for its efficient solution for the nonconvex multidimensional problem. Generally, the parameter calibration of the nested logit model is nonconvex and hence, its solution may not be a global one. A hybrid estimation algorithm combining GA and the gradient method for the simultaneous nested logit model estimation has been suggested. The hybrid algorithm is implemented in a code, named G-Logit. An experimental test results, although limited, showed that the hybrid algorithm effectively search the solution domain of the nested logit model calibration and produced better estimates than the solely used gradient method. More... »

PAGES

129-133

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02829088

DOI

http://dx.doi.org/10.1007/bf02829088

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004042951


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gyeonggi Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.496114.f", 
          "name": [
            "Seoul Development Institute, Korea", 
            "Kyonggi Research Institute, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryoo", 
        "givenName": "Si Kyun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Chung Won", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0304-4076(78)90086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012110240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00107519608230341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029343086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/a090285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058151642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/a090285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058151642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/41.538609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061169160"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "The parameter estimation of the nested logit model is conducted either simultaneously or sequentially. This is well known fact that the sequential method yields less efficient estimates than the simultaneous one, although its estimates are consistent and asymptotically efficient. Due to the computational burden, however, the sequential estimation is more often employed. Recently, the genetic algorithm has received a great deal of attention for its efficient solution for the nonconvex multidimensional problem. Generally, the parameter calibration of the nested logit model is nonconvex and hence, its solution may not be a global one. A hybrid estimation algorithm combining GA and the gradient method for the simultaneous nested logit model estimation has been suggested. The hybrid algorithm is implemented in a code, named G-Logit. An experimental test results, although limited, showed that the hybrid algorithm effectively search the solution domain of the nested logit model calibration and produced better estimates than the solely used gradient method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02829088", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136365", 
        "issn": [
          "1226-7988", 
          "1976-3808"
        ], 
        "name": "KSCE Journal of Civil Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Genetic algorithm and simultaneous parameter estimation of the nested logit model", 
    "pagination": "129-133", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "13437208f3afe526de16ee9a747687f4ccd1575390b168909d87ba540c9959f0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02829088"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004042951"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02829088", 
      "https://app.dimensions.ai/details/publication/pub.1004042951"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02829088"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02829088'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02829088'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02829088'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02829088'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02829088 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author Nc2da5a05cdbf40e9b8f5f74ca81e288c
4 schema:citation https://doi.org/10.1016/0304-4076(78)90086-6
5 https://doi.org/10.1068/a090285
6 https://doi.org/10.1080/00107519608230341
7 https://doi.org/10.1109/41.538609
8 schema:datePublished 2004-01
9 schema:datePublishedReg 2004-01-01
10 schema:description The parameter estimation of the nested logit model is conducted either simultaneously or sequentially. This is well known fact that the sequential method yields less efficient estimates than the simultaneous one, although its estimates are consistent and asymptotically efficient. Due to the computational burden, however, the sequential estimation is more often employed. Recently, the genetic algorithm has received a great deal of attention for its efficient solution for the nonconvex multidimensional problem. Generally, the parameter calibration of the nested logit model is nonconvex and hence, its solution may not be a global one. A hybrid estimation algorithm combining GA and the gradient method for the simultaneous nested logit model estimation has been suggested. The hybrid algorithm is implemented in a code, named G-Logit. An experimental test results, although limited, showed that the hybrid algorithm effectively search the solution domain of the nested logit model calibration and produced better estimates than the solely used gradient method.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N9e2538a746e1400197c77681718affd4
15 Na28493fa4e5d4de59d46d02f6778492e
16 sg:journal.1136365
17 schema:name Genetic algorithm and simultaneous parameter estimation of the nested logit model
18 schema:pagination 129-133
19 schema:productId N27763af819aa4ef2819929a4840b36d3
20 N5c21a9b0b6b34bbfa3cefcf543c53a37
21 Nb784584cc3b94ba9b3fa692367acf49d
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004042951
23 https://doi.org/10.1007/bf02829088
24 schema:sdDatePublished 2019-04-11T13:47
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Ne9c7e21ec5ca496d9b00455616b0d34e
27 schema:url http://link.springer.com/10.1007/BF02829088
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N1963fbee3a9446598d3e9dc571278c4d schema:affiliation https://www.grid.ac/institutes/grid.496114.f
32 schema:familyName Ryoo
33 schema:givenName Si Kyun
34 rdf:type schema:Person
35 N27763af819aa4ef2819929a4840b36d3 schema:name dimensions_id
36 schema:value pub.1004042951
37 rdf:type schema:PropertyValue
38 N5c21a9b0b6b34bbfa3cefcf543c53a37 schema:name readcube_id
39 schema:value 13437208f3afe526de16ee9a747687f4ccd1575390b168909d87ba540c9959f0
40 rdf:type schema:PropertyValue
41 N7cf7995585b24acf83baf49b81f7c2f6 schema:affiliation Nb42a9e283ef54585a8907d3e257736b0
42 schema:familyName Lee
43 schema:givenName Chung Won
44 rdf:type schema:Person
45 N9e2538a746e1400197c77681718affd4 schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 Na28493fa4e5d4de59d46d02f6778492e schema:volumeNumber 8
48 rdf:type schema:PublicationVolume
49 Nb42a9e283ef54585a8907d3e257736b0 schema:name Gyeonggi-do, Korea
50 rdf:type schema:Organization
51 Nb784584cc3b94ba9b3fa692367acf49d schema:name doi
52 schema:value 10.1007/bf02829088
53 rdf:type schema:PropertyValue
54 Nbee51b8fa078490d85ddd4608960607b rdf:first N7cf7995585b24acf83baf49b81f7c2f6
55 rdf:rest rdf:nil
56 Nc2da5a05cdbf40e9b8f5f74ca81e288c rdf:first N1963fbee3a9446598d3e9dc571278c4d
57 rdf:rest Nbee51b8fa078490d85ddd4608960607b
58 Ne9c7e21ec5ca496d9b00455616b0d34e schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
61 schema:name Engineering
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
64 schema:name Electrical and Electronic Engineering
65 rdf:type schema:DefinedTerm
66 sg:journal.1136365 schema:issn 1226-7988
67 1976-3808
68 schema:name KSCE Journal of Civil Engineering
69 rdf:type schema:Periodical
70 https://doi.org/10.1016/0304-4076(78)90086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012110240
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1068/a090285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058151642
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1080/00107519608230341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029343086
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1109/41.538609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169160
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.496114.f schema:alternateName Gyeonggi Research Institute
79 schema:name Kyonggi Research Institute, Korea
80 Seoul Development Institute, Korea
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...