Treatment of vertex functions for physical pions and the callan-treiman relation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1968-09

AUTHORS

M. Ademollo, G. Denardo, G. Furlan

ABSTRACT

Starting from the Callan-Treiman relation between the K→πμν and K→μν amplitudes, we analyse the problem of the extrapolation from the soft-pion limit, where we have the prescription of current algebra, to the physical region for a general vertex function using a sum rule formulation. The simplest analyticity properties are those exhibited in the pion energy at fixed three-momentum. The corresponding dispersive path, in the plane of the squared pion mass and of the momentum transfer, is a parabola depending on the external variables. The advantages of choosing the parabola, of maximum curvature are discussed. We study in particular the case of Kℓ3 decay and we find three possible independent sum rules, one of which represents a generalization of the Callan-Treiman result. The effect of a possible strange scalar meson is explicitly considered. More... »

PAGES

1-19

References to SciGraph publications

  • 1967-10. Fubini sum rules for vertex functions in IL NUOVO CIMENTO A (1965-1970)
  • 1967-08. Vertex functions in the dispersion theory of current algebras in IL NUOVO CIMENTO A (1971-1996)
  • 1967-10. Families of sum rules from current algebra in IL NUOVO CIMENTO A (1965-1970)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02824431

    DOI

    http://dx.doi.org/10.1007/bf02824431

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005000697


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lyman Laboratory of Physics, Harvard University, Cambridge, Mass.", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Lyman Laboratory of Physics, Harvard University, Cambridge, Mass."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ademollo", 
            "givenName": "M.", 
            "id": "sg:person.010267543303.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010267543303.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Trieste", 
              "id": "http://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Istituto di Meccanica dell\u2019Universit\u00e0, Trieste", 
                "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Trieste"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Denardo", 
            "givenName": "G.", 
            "id": "sg:person.014623503331.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623503331.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Theoretical Physics, State University of New York, Stony Brook, N.Y.", 
              "id": "http://www.grid.ac/institutes/grid.36425.36", 
              "name": [
                "Institute for Theoretical Physics, State University of New York, Stony Brook, N.Y."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furlan", 
            "givenName": "G.", 
            "id": "sg:person.014625714377.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02721768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030070872", 
              "https://doi.org/10.1007/bf02721768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02823541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003405500", 
              "https://doi.org/10.1007/bf02823541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02721767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050627820", 
              "https://doi.org/10.1007/bf02721767"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1968-09", 
        "datePublishedReg": "1968-09-01", 
        "description": "Starting from the Callan-Treiman relation between the K\u2192\u03c0\u03bc\u03bd and K\u2192\u03bc\u03bd amplitudes, we analyse the problem of the extrapolation from the soft-pion limit, where we have the prescription of current algebra, to the physical region for a general vertex function using a sum rule formulation. The simplest analyticity properties are those exhibited in the pion energy at fixed three-momentum. The corresponding dispersive path, in the plane of the squared pion mass and of the momentum transfer, is a parabola depending on the external variables. The advantages of choosing the parabola, of maximum curvature are discussed. We study in particular the case of K\u21133 decay and we find three possible independent sum rules, one of which represents a generalization of the Callan-Treiman result. The effect of a possible strange scalar meson is explicitly considered.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02824431", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1328730", 
            "issn": [
              "0369-3546", 
              "1826-9869"
            ], 
            "name": "Il Nuovo Cimento A (1965-1970)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "57"
          }
        ], 
        "keywords": [
          "amplitude", 
          "rule formulation", 
          "formulation", 
          "properties", 
          "energy", 
          "path", 
          "plane", 
          "momentum transfer", 
          "transfer", 
          "parabola", 
          "advantages", 
          "maximum curvature", 
          "curvature", 
          "relation", 
          "problem", 
          "extrapolation", 
          "soft-pion limit", 
          "limit", 
          "prescription", 
          "physical region", 
          "region", 
          "vertex function", 
          "function", 
          "analyticity properties", 
          "pion energies", 
          "three-momentum", 
          "pion mass", 
          "mass", 
          "external variables", 
          "variables", 
          "cases", 
          "decay", 
          "independent sum rules", 
          "sum rules", 
          "rules", 
          "generalization", 
          "results", 
          "effect", 
          "scalar mesons", 
          "mesons", 
          "treatment", 
          "physical pions", 
          "pions", 
          "Callan-Treiman relation", 
          "current algebra", 
          "algebra", 
          "general vertex function", 
          "sum rule formulation", 
          "simplest analyticity properties", 
          "dispersive path", 
          "squared pion mass", 
          "possible independent sum rules", 
          "Callan-Treiman result", 
          "possible strange scalar meson", 
          "strange scalar meson"
        ], 
        "name": "Treatment of vertex functions for physical pions and the callan-treiman relation", 
        "pagination": "1-19", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005000697"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02824431"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02824431", 
          "https://app.dimensions.ai/details/publication/pub.1005000697"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T17:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_100.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02824431"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02824431'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02824431'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02824431'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02824431'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      22 PREDICATES      84 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02824431 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N1a30fa039e264c36ac1cfa1d82e583d8
    4 schema:citation sg:pub.10.1007/bf02721767
    5 sg:pub.10.1007/bf02721768
    6 sg:pub.10.1007/bf02823541
    7 schema:datePublished 1968-09
    8 schema:datePublishedReg 1968-09-01
    9 schema:description Starting from the Callan-Treiman relation between the K→πμν and K→μν amplitudes, we analyse the problem of the extrapolation from the soft-pion limit, where we have the prescription of current algebra, to the physical region for a general vertex function using a sum rule formulation. The simplest analyticity properties are those exhibited in the pion energy at fixed three-momentum. The corresponding dispersive path, in the plane of the squared pion mass and of the momentum transfer, is a parabola depending on the external variables. The advantages of choosing the parabola, of maximum curvature are discussed. We study in particular the case of Kℓ3 decay and we find three possible independent sum rules, one of which represents a generalization of the Callan-Treiman result. The effect of a possible strange scalar meson is explicitly considered.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf Ndf83d38589a2460488281fd1a2d369bd
    14 Nee552d1549ac4b478da68a7c7e491969
    15 sg:journal.1328730
    16 schema:keywords Callan-Treiman relation
    17 Callan-Treiman result
    18 advantages
    19 algebra
    20 amplitude
    21 analyticity properties
    22 cases
    23 current algebra
    24 curvature
    25 decay
    26 dispersive path
    27 effect
    28 energy
    29 external variables
    30 extrapolation
    31 formulation
    32 function
    33 general vertex function
    34 generalization
    35 independent sum rules
    36 limit
    37 mass
    38 maximum curvature
    39 mesons
    40 momentum transfer
    41 parabola
    42 path
    43 physical pions
    44 physical region
    45 pion energies
    46 pion mass
    47 pions
    48 plane
    49 possible independent sum rules
    50 possible strange scalar meson
    51 prescription
    52 problem
    53 properties
    54 region
    55 relation
    56 results
    57 rule formulation
    58 rules
    59 scalar mesons
    60 simplest analyticity properties
    61 soft-pion limit
    62 squared pion mass
    63 strange scalar meson
    64 sum rule formulation
    65 sum rules
    66 three-momentum
    67 transfer
    68 treatment
    69 variables
    70 vertex function
    71 schema:name Treatment of vertex functions for physical pions and the callan-treiman relation
    72 schema:pagination 1-19
    73 schema:productId N177c36efe801412bbcc7f5f76cd81d98
    74 N6425b5fd60a54f29ad19ef1048f934e0
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005000697
    76 https://doi.org/10.1007/bf02824431
    77 schema:sdDatePublished 2021-11-01T17:53
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher N857e2512f77647c8a1413bc754969a71
    80 schema:url https://doi.org/10.1007/bf02824431
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N177c36efe801412bbcc7f5f76cd81d98 schema:name doi
    85 schema:value 10.1007/bf02824431
    86 rdf:type schema:PropertyValue
    87 N1a30fa039e264c36ac1cfa1d82e583d8 rdf:first sg:person.010267543303.22
    88 rdf:rest Ndf048e8384964569803d1368d077423c
    89 N6425b5fd60a54f29ad19ef1048f934e0 schema:name dimensions_id
    90 schema:value pub.1005000697
    91 rdf:type schema:PropertyValue
    92 N7895e736723d44208b47bd97d3d1510e rdf:first sg:person.014625714377.67
    93 rdf:rest rdf:nil
    94 N857e2512f77647c8a1413bc754969a71 schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 Ndf048e8384964569803d1368d077423c rdf:first sg:person.014623503331.23
    97 rdf:rest N7895e736723d44208b47bd97d3d1510e
    98 Ndf83d38589a2460488281fd1a2d369bd schema:volumeNumber 57
    99 rdf:type schema:PublicationVolume
    100 Nee552d1549ac4b478da68a7c7e491969 schema:issueNumber 1
    101 rdf:type schema:PublicationIssue
    102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Engineering
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Materials Engineering
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1328730 schema:issn 0369-3546
    109 1826-9869
    110 schema:name Il Nuovo Cimento A (1965-1970)
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.010267543303.22 schema:affiliation grid-institutes:grid.38142.3c
    114 schema:familyName Ademollo
    115 schema:givenName M.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010267543303.22
    117 rdf:type schema:Person
    118 sg:person.014623503331.23 schema:affiliation grid-institutes:grid.5133.4
    119 schema:familyName Denardo
    120 schema:givenName G.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623503331.23
    122 rdf:type schema:Person
    123 sg:person.014625714377.67 schema:affiliation grid-institutes:grid.36425.36
    124 schema:familyName Furlan
    125 schema:givenName G.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67
    127 rdf:type schema:Person
    128 sg:pub.10.1007/bf02721767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050627820
    129 https://doi.org/10.1007/bf02721767
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf02721768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030070872
    132 https://doi.org/10.1007/bf02721768
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf02823541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003405500
    135 https://doi.org/10.1007/bf02823541
    136 rdf:type schema:CreativeWork
    137 grid-institutes:grid.36425.36 schema:alternateName Institute for Theoretical Physics, State University of New York, Stony Brook, N.Y.
    138 schema:name Institute for Theoretical Physics, State University of New York, Stony Brook, N.Y.
    139 rdf:type schema:Organization
    140 grid-institutes:grid.38142.3c schema:alternateName Lyman Laboratory of Physics, Harvard University, Cambridge, Mass.
    141 schema:name Lyman Laboratory of Physics, Harvard University, Cambridge, Mass.
    142 rdf:type schema:Organization
    143 grid-institutes:grid.5133.4 schema:alternateName Istituto di Fisica Teorica dell’Università, Trieste
    144 schema:name Istituto di Fisica Teorica dell’Università, Trieste
    145 Istituto di Meccanica dell’Università, Trieste
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...