The use of an automated cell tracking system to identify specific cell types competent for regeneration and transformation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-04

AUTHORS

F. A. Krens, H. A. Verhoeven, A. J. Van Tunen, R. D. Hall

ABSTRACT

Combining stepper-motors for microscope stage movement with a specially designed software program has led to the establishment of an efficient cell tracking system. Cell immobilization, fixed reference points for calibration of target cell positions, and a video recording system complete the cell finder system. Specific cells can be identified (either beforehand or in retrospect), their locations fixed, and subsequent development of the individual cells monitored daily using computer-assisted relocation. In this way, the specific cell type capable of sustained division and regeneration has recently been identified within a low efficiency protoplast system of a recalcitrant species, sugarbeet. These totipotent cells originated from stomatal guard cells. Isolation and purification procedures were then optimized in a directed way to yield millions of guard cell protoplasts (GCPs). Using polyethylene glycol (PEG)-mediated gene transfer and glucuronidase (GUS) activity for transient expression studies proved that GCPs were amenable to transformation. Gene transfer efficiency was high, as was the number of stably transformed plants that can be produced. At present, the optimized procedure yields 600 transgenic individuals per person per year. This number allows for the selection of the best plants with regard to copy number, DNA insert size, gene expression, and field performance. Prospects for future application of the cell finder system will be discussed. More... »

PAGES

81-86

References to SciGraph publications

  • 1993-04. Improvement of protoplast culture protocols for Beta vulgaris L. (sugar beet) in PLANT CELL REPORTS
  • 1990-05. Transfer of cytoplasm from newBeta CMS sources to sugar beet by asymmetric fusion in THEORETICAL AND APPLIED GENETICS
  • 1994. Regeneration of Plants from Protoplasts of Beta vulgaris (Sugar Beet) in PLANT PROTOPLASTS AND GENETIC ENGINEERING V
  • 1995-02. Somaclonal variation as a tool for crop improvement in EUPHYTICA
  • 1997. Use of video cell tracking to identify embryogenic cultured cells in PLANT TISSUE CULTURE MANUAL
  • 1992-01. Induction of division and differentiation of somatic embryos in the leaf epidermis of Gaillardia picta in PLANT CELL REPORTS
  • 1995-02. The potential of somatic hybridization in crop breeding in EUPHYTICA
  • 1994-12-01. Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking in PLANTA
  • 1996-09. A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells in NATURE BIOTECHNOLOGY
  • 1992-03-01. Transformation of Sugarbeet (Beta vulgaris L.) and Evaluation of Herbicide Resistance in Transgenic Plants in NATURE BIOTECHNOLOGY
  • 1982-03. In vitro transformation of plant protoplasts with Ti-plasmid DNA in NATURE
  • 1985-12-01. High Efficiency Direct Gene Transfer to Plants in NATURE BIOTECHNOLOGY
  • 1988-01. An improved medium for adventitious shoot formation and callus induction in Beta vulgaris L. in vitro in PLANT CELL REPORTS
  • 1987-04. Individual selection, culture and manipulation of higher plant cells in THEORETICAL AND APPLIED GENETICS
  • 1984. Protoplast Fusion in NONE
  • 1978-03. Fractionation of plant protoplast types by iso-osmotic density gradient centrifugation in THEORETICAL AND APPLIED GENETICS
  • 1992-03. Nuclear shape and DNA content of fully habituated nonorganogenic sugarbeet cells in PROTOPLASMA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02822769

    DOI

    http://dx.doi.org/10.1007/bf02822769

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043685149


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krens", 
            "givenName": "F. A.", 
            "id": "sg:person.01074243135.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074243135.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verhoeven", 
            "givenName": "H. A.", 
            "id": "sg:person.01205626434.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205626434.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Tunen", 
            "givenName": "A. J.", 
            "id": "sg:person.01021363752.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021363752.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hall", 
            "givenName": "R. D.", 
            "id": "sg:person.0704576323.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704576323.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00237431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005027083", 
              "https://doi.org/10.1007/bf00237431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00714471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021224188", 
              "https://doi.org/10.1007/bf00714471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01186084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006349397", 
              "https://doi.org/10.1007/bf01186084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-0103-2_60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051292595", 
              "https://doi.org/10.1007/978-94-009-0103-2_60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00232378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048533670", 
              "https://doi.org/10.1007/bf00232378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0392-309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036028674", 
              "https://doi.org/10.1038/nbt0392-309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0996-1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012331810", 
              "https://doi.org/10.1038/nbt0996-1133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00289379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040971480", 
              "https://doi.org/10.1007/bf00289379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00817833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020493481", 
              "https://doi.org/10.1007/bf00817833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1285-1099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019880884", 
              "https://doi.org/10.1038/nbt1285-1099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-82245-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710974", 
              "https://doi.org/10.1007/978-3-642-82245-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01320142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051842756", 
              "https://doi.org/10.1007/bf01320142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00023951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015067535", 
              "https://doi.org/10.1007/bf00023951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-09366-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016867011", 
              "https://doi.org/10.1007/978-3-662-09366-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/296072a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052220023", 
              "https://doi.org/10.1038/296072a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00023959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007351911", 
              "https://doi.org/10.1007/bf00023959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00272972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009892028", 
              "https://doi.org/10.1007/bf00272972"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-04", 
        "datePublishedReg": "1998-04-01", 
        "description": "Combining stepper-motors for microscope stage movement with a specially designed software program has led to the establishment of an efficient cell tracking system. Cell immobilization, fixed reference points for calibration of target cell positions, and a video recording system complete the cell finder system. Specific cells can be identified (either beforehand or in retrospect), their locations fixed, and subsequent development of the individual cells monitored daily using computer-assisted relocation. In this way, the specific cell type capable of sustained division and regeneration has recently been identified within a low efficiency protoplast system of a recalcitrant species, sugarbeet. These totipotent cells originated from stomatal guard cells. Isolation and purification procedures were then optimized in a directed way to yield millions of guard cell protoplasts (GCPs). Using polyethylene glycol (PEG)-mediated gene transfer and glucuronidase (GUS) activity for transient expression studies proved that GCPs were amenable to transformation. Gene transfer efficiency was high, as was the number of stably transformed plants that can be produced. At present, the optimized procedure yields 600 transgenic individuals per person per year. This number allows for the selection of the best plants with regard to copy number, DNA insert size, gene expression, and field performance. Prospects for future application of the cell finder system will be discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02822769", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1101676", 
            "issn": [
              "1054-5476", 
              "1475-2689"
            ], 
            "name": "In Vitro Cellular & Developmental Biology - Plant", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "guard cell protoplasts", 
          "specific cell types", 
          "cell tracking system", 
          "DNA insert size", 
          "stomatal guard cells", 
          "cell types", 
          "transient expression studies", 
          "recalcitrant species", 
          "protoplast system", 
          "totipotent cells", 
          "guard cells", 
          "transgenic individuals", 
          "insert size", 
          "cell protoplasts", 
          "expression studies", 
          "gene expression", 
          "sustained divisions", 
          "best plants", 
          "copy number", 
          "gene transfer", 
          "individual cells", 
          "glucuronidase activity", 
          "cell position", 
          "specific cells", 
          "purification procedure", 
          "plants", 
          "cells", 
          "gene transfer efficiency", 
          "cell immobilization", 
          "protoplasts", 
          "regeneration", 
          "microscope stage movements", 
          "species", 
          "field performance", 
          "sugarbeet", 
          "expression", 
          "division", 
          "isolation", 
          "establishment", 
          "selection", 
          "activity", 
          "number", 
          "future applications", 
          "types", 
          "transformation", 
          "subsequent development", 
          "development", 
          "transfer efficiency", 
          "relocation", 
          "millions", 
          "system", 
          "individuals", 
          "location", 
          "transfer", 
          "size", 
          "present", 
          "movement", 
          "study", 
          "position", 
          "prospects", 
          "immobilization", 
          "way", 
          "efficiency", 
          "reference point", 
          "software program", 
          "regard", 
          "finder system", 
          "years", 
          "use", 
          "program", 
          "applications", 
          "point", 
          "procedure", 
          "stage movement", 
          "polyethylene", 
          "calibration", 
          "performance", 
          "tracking system", 
          "persons", 
          "video", 
          "efficient cell tracking system", 
          "target cell positions", 
          "cell finder system", 
          "computer-assisted relocation", 
          "low efficiency protoplast system", 
          "efficiency protoplast system"
        ], 
        "name": "The use of an automated cell tracking system to identify specific cell types competent for regeneration and transformation", 
        "pagination": "81-86", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043685149"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02822769"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02822769", 
          "https://app.dimensions.ai/details/publication/pub.1043685149"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_278.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02822769"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02822769'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02822769'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02822769'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02822769'


     

    This table displays all metadata directly associated to this object as RDF triples.

    233 TRIPLES      22 PREDICATES      129 URIs      104 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02822769 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N7b8c871d17ce465f82d4f486d86f2959
    4 schema:citation sg:pub.10.1007/978-3-642-82245-2
    5 sg:pub.10.1007/978-3-662-09366-5_2
    6 sg:pub.10.1007/978-94-009-0103-2_60
    7 sg:pub.10.1007/bf00023951
    8 sg:pub.10.1007/bf00023959
    9 sg:pub.10.1007/bf00232378
    10 sg:pub.10.1007/bf00237431
    11 sg:pub.10.1007/bf00272972
    12 sg:pub.10.1007/bf00289379
    13 sg:pub.10.1007/bf00714471
    14 sg:pub.10.1007/bf00817833
    15 sg:pub.10.1007/bf01186084
    16 sg:pub.10.1007/bf01320142
    17 sg:pub.10.1038/296072a0
    18 sg:pub.10.1038/nbt0392-309
    19 sg:pub.10.1038/nbt0996-1133
    20 sg:pub.10.1038/nbt1285-1099
    21 schema:datePublished 1998-04
    22 schema:datePublishedReg 1998-04-01
    23 schema:description Combining stepper-motors for microscope stage movement with a specially designed software program has led to the establishment of an efficient cell tracking system. Cell immobilization, fixed reference points for calibration of target cell positions, and a video recording system complete the cell finder system. Specific cells can be identified (either beforehand or in retrospect), their locations fixed, and subsequent development of the individual cells monitored daily using computer-assisted relocation. In this way, the specific cell type capable of sustained division and regeneration has recently been identified within a low efficiency protoplast system of a recalcitrant species, sugarbeet. These totipotent cells originated from stomatal guard cells. Isolation and purification procedures were then optimized in a directed way to yield millions of guard cell protoplasts (GCPs). Using polyethylene glycol (PEG)-mediated gene transfer and glucuronidase (GUS) activity for transient expression studies proved that GCPs were amenable to transformation. Gene transfer efficiency was high, as was the number of stably transformed plants that can be produced. At present, the optimized procedure yields 600 transgenic individuals per person per year. This number allows for the selection of the best plants with regard to copy number, DNA insert size, gene expression, and field performance. Prospects for future application of the cell finder system will be discussed.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N35c8d34d85414ef3b2b6c12adead4b29
    28 N4f2101aa152343278629019b8b9beacf
    29 sg:journal.1101676
    30 schema:keywords DNA insert size
    31 activity
    32 applications
    33 best plants
    34 calibration
    35 cell finder system
    36 cell immobilization
    37 cell position
    38 cell protoplasts
    39 cell tracking system
    40 cell types
    41 cells
    42 computer-assisted relocation
    43 copy number
    44 development
    45 division
    46 efficiency
    47 efficiency protoplast system
    48 efficient cell tracking system
    49 establishment
    50 expression
    51 expression studies
    52 field performance
    53 finder system
    54 future applications
    55 gene expression
    56 gene transfer
    57 gene transfer efficiency
    58 glucuronidase activity
    59 guard cell protoplasts
    60 guard cells
    61 immobilization
    62 individual cells
    63 individuals
    64 insert size
    65 isolation
    66 location
    67 low efficiency protoplast system
    68 microscope stage movements
    69 millions
    70 movement
    71 number
    72 performance
    73 persons
    74 plants
    75 point
    76 polyethylene
    77 position
    78 present
    79 procedure
    80 program
    81 prospects
    82 protoplast system
    83 protoplasts
    84 purification procedure
    85 recalcitrant species
    86 reference point
    87 regard
    88 regeneration
    89 relocation
    90 selection
    91 size
    92 software program
    93 species
    94 specific cell types
    95 specific cells
    96 stage movement
    97 stomatal guard cells
    98 study
    99 subsequent development
    100 sugarbeet
    101 sustained divisions
    102 system
    103 target cell positions
    104 totipotent cells
    105 tracking system
    106 transfer
    107 transfer efficiency
    108 transformation
    109 transgenic individuals
    110 transient expression studies
    111 types
    112 use
    113 video
    114 way
    115 years
    116 schema:name The use of an automated cell tracking system to identify specific cell types competent for regeneration and transformation
    117 schema:pagination 81-86
    118 schema:productId N0210513dffa645acb67f21356230f2c2
    119 Nd69cf92e242841aca9a3157513ebeb0c
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043685149
    121 https://doi.org/10.1007/bf02822769
    122 schema:sdDatePublished 2021-12-01T19:10
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher Ne662d8084d0c432ba91b6bccadcae4bb
    125 schema:url https://doi.org/10.1007/bf02822769
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N00e4314534aa444ba7d1446c83f4bbd9 rdf:first sg:person.01205626434.22
    130 rdf:rest N280a1fa119654094bd16baf28e951602
    131 N0210513dffa645acb67f21356230f2c2 schema:name dimensions_id
    132 schema:value pub.1043685149
    133 rdf:type schema:PropertyValue
    134 N280a1fa119654094bd16baf28e951602 rdf:first sg:person.01021363752.21
    135 rdf:rest Ne0a46622ab2e4f15b8dec6a6c072bd9b
    136 N35c8d34d85414ef3b2b6c12adead4b29 schema:volumeNumber 34
    137 rdf:type schema:PublicationVolume
    138 N4f2101aa152343278629019b8b9beacf schema:issueNumber 2
    139 rdf:type schema:PublicationIssue
    140 N7b8c871d17ce465f82d4f486d86f2959 rdf:first sg:person.01074243135.40
    141 rdf:rest N00e4314534aa444ba7d1446c83f4bbd9
    142 Nd69cf92e242841aca9a3157513ebeb0c schema:name doi
    143 schema:value 10.1007/bf02822769
    144 rdf:type schema:PropertyValue
    145 Ne0a46622ab2e4f15b8dec6a6c072bd9b rdf:first sg:person.0704576323.20
    146 rdf:rest rdf:nil
    147 Ne662d8084d0c432ba91b6bccadcae4bb schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Biological Sciences
    151 rdf:type schema:DefinedTerm
    152 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Biochemistry and Cell Biology
    154 rdf:type schema:DefinedTerm
    155 sg:journal.1101676 schema:issn 1054-5476
    156 1475-2689
    157 schema:name In Vitro Cellular & Developmental Biology - Plant
    158 schema:publisher Springer Nature
    159 rdf:type schema:Periodical
    160 sg:person.01021363752.21 schema:affiliation grid-institutes:grid.4818.5
    161 schema:familyName Van Tunen
    162 schema:givenName A. J.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021363752.21
    164 rdf:type schema:Person
    165 sg:person.01074243135.40 schema:affiliation grid-institutes:grid.4818.5
    166 schema:familyName Krens
    167 schema:givenName F. A.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074243135.40
    169 rdf:type schema:Person
    170 sg:person.01205626434.22 schema:affiliation grid-institutes:grid.4818.5
    171 schema:familyName Verhoeven
    172 schema:givenName H. A.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205626434.22
    174 rdf:type schema:Person
    175 sg:person.0704576323.20 schema:affiliation grid-institutes:grid.4818.5
    176 schema:familyName Hall
    177 schema:givenName R. D.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704576323.20
    179 rdf:type schema:Person
    180 sg:pub.10.1007/978-3-642-82245-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710974
    181 https://doi.org/10.1007/978-3-642-82245-2
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/978-3-662-09366-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016867011
    184 https://doi.org/10.1007/978-3-662-09366-5_2
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/978-94-009-0103-2_60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051292595
    187 https://doi.org/10.1007/978-94-009-0103-2_60
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/bf00023951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015067535
    190 https://doi.org/10.1007/bf00023951
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf00023959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007351911
    193 https://doi.org/10.1007/bf00023959
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bf00232378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048533670
    196 https://doi.org/10.1007/bf00232378
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/bf00237431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005027083
    199 https://doi.org/10.1007/bf00237431
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/bf00272972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009892028
    202 https://doi.org/10.1007/bf00272972
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/bf00289379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040971480
    205 https://doi.org/10.1007/bf00289379
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/bf00714471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021224188
    208 https://doi.org/10.1007/bf00714471
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/bf00817833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020493481
    211 https://doi.org/10.1007/bf00817833
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/bf01186084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006349397
    214 https://doi.org/10.1007/bf01186084
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/bf01320142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051842756
    217 https://doi.org/10.1007/bf01320142
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/296072a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052220023
    220 https://doi.org/10.1038/296072a0
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nbt0392-309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036028674
    223 https://doi.org/10.1038/nbt0392-309
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nbt0996-1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012331810
    226 https://doi.org/10.1038/nbt0996-1133
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nbt1285-1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019880884
    229 https://doi.org/10.1038/nbt1285-1099
    230 rdf:type schema:CreativeWork
    231 grid-institutes:grid.4818.5 schema:alternateName Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
    232 schema:name Department of Cell Biology, CPRO-DLO, Centre for Plant Breeding and Reproduction Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
    233 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...