Bulk amorphous metal—An emerging engineering material View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-03

AUTHORS

W. L. Johnson

ABSTRACT

During the last two decades, researchers have developed families of metal alloys that exhibit exceptional resistance to crystallization in the undercooled liquid state. Upon cooling, these alloys readily form glass or vitrify to form bulk amorphous alloys or bulk metallic glasses. The stability of the undercooled molten alloys with respect to crystallization has enabled studies of liquid thermodynamics, rheology, atomic diffusion, and the glass transition previously not possible in metallic systems. Bulk amorphous alloys exhibit very high strength, specific strength, and elastic strain limit, along with unusual combinations of other engineering properties. These factors, taken together, suggest that bulk amorphous metals will become widely used engineering materials during the next decade. More... »

PAGES

40-43

References to SciGraph publications

Journal

TITLE

JOM

ISSUE

3

VOLUME

54

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02822619

DOI

http://dx.doi.org/10.1007/bf02822619

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039875531


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Department of Materials Science, California Institute of Technology, 91125, Pasadena, California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "W. L.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0921-4526(97)00753-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002302422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/187869b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841532", 
          "https://doi.org/10.1038/187869b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(74)90112-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024981743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(74)90112-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024981743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1989.31.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028544387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(98)00122-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032927417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-743x(99)00176-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034859931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.110520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057658084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1747588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057809754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.93645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058133784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.2901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.2901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.267.5206.1924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/s0883769400053252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067964161"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-03", 
    "datePublishedReg": "2002-03-01", 
    "description": "During the last two decades, researchers have developed families of metal alloys that exhibit exceptional resistance to crystallization in the undercooled liquid state. Upon cooling, these alloys readily form glass or vitrify to form bulk amorphous alloys or bulk metallic glasses. The stability of the undercooled molten alloys with respect to crystallization has enabled studies of liquid thermodynamics, rheology, atomic diffusion, and the glass transition previously not possible in metallic systems. Bulk amorphous alloys exhibit very high strength, specific strength, and elastic strain limit, along with unusual combinations of other engineering properties. These factors, taken together, suggest that bulk amorphous metals will become widely used engineering materials during the next decade.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02822619", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Bulk amorphous metal\u2014An emerging engineering material", 
    "pagination": "40-43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bdf30543d54d6f32b788f5b626a0edb8dcf9064725838623ad5546ffd49a8134"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02822619"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039875531"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02822619", 
      "https://app.dimensions.ai/details/publication/pub.1039875531"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46779_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02822619"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02822619'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02822619'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02822619'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02822619'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02822619 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc01719ba68ad439289814e709a3f3dc4
4 schema:citation sg:pub.10.1038/187869b0
5 https://doi.org/10.1016/0001-6160(74)90112-6
6 https://doi.org/10.1016/s0734-743x(99)00176-1
7 https://doi.org/10.1016/s0921-4526(97)00753-9
8 https://doi.org/10.1016/s1359-6454(98)00122-0
9 https://doi.org/10.1063/1.110520
10 https://doi.org/10.1063/1.1747588
11 https://doi.org/10.1063/1.93645
12 https://doi.org/10.1103/physrevlett.84.2901
13 https://doi.org/10.1126/science.267.5206.1924
14 https://doi.org/10.1557/s0883769400053252
15 https://doi.org/10.2320/matertrans1989.31.104
16 schema:datePublished 2002-03
17 schema:datePublishedReg 2002-03-01
18 schema:description During the last two decades, researchers have developed families of metal alloys that exhibit exceptional resistance to crystallization in the undercooled liquid state. Upon cooling, these alloys readily form glass or vitrify to form bulk amorphous alloys or bulk metallic glasses. The stability of the undercooled molten alloys with respect to crystallization has enabled studies of liquid thermodynamics, rheology, atomic diffusion, and the glass transition previously not possible in metallic systems. Bulk amorphous alloys exhibit very high strength, specific strength, and elastic strain limit, along with unusual combinations of other engineering properties. These factors, taken together, suggest that bulk amorphous metals will become widely used engineering materials during the next decade.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Na7e7bc6e8109429c969f1f74d4aa5933
23 Ncf4593fb34404775a4dffa2dd3d50807
24 sg:journal.1042541
25 schema:name Bulk amorphous metal—An emerging engineering material
26 schema:pagination 40-43
27 schema:productId N27a17fcb65fd487fa0f51e20651539ae
28 N89d57e6e78714721b6f377d1801344fe
29 Neb283251a8e049c8b3b74cbf1b091e69
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039875531
31 https://doi.org/10.1007/bf02822619
32 schema:sdDatePublished 2019-04-11T13:36
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N9848dc1ff96a4f7eb5e799d0842d2d2d
35 schema:url http://link.springer.com/10.1007%2FBF02822619
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N27a17fcb65fd487fa0f51e20651539ae schema:name readcube_id
40 schema:value bdf30543d54d6f32b788f5b626a0edb8dcf9064725838623ad5546ffd49a8134
41 rdf:type schema:PropertyValue
42 N75e7cc078abf46f48d9c8e9027473fa5 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
43 schema:familyName Johnson
44 schema:givenName W. L.
45 rdf:type schema:Person
46 N89d57e6e78714721b6f377d1801344fe schema:name dimensions_id
47 schema:value pub.1039875531
48 rdf:type schema:PropertyValue
49 N9848dc1ff96a4f7eb5e799d0842d2d2d schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Na7e7bc6e8109429c969f1f74d4aa5933 schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 Nc01719ba68ad439289814e709a3f3dc4 rdf:first N75e7cc078abf46f48d9c8e9027473fa5
54 rdf:rest rdf:nil
55 Ncf4593fb34404775a4dffa2dd3d50807 schema:volumeNumber 54
56 rdf:type schema:PublicationVolume
57 Neb283251a8e049c8b3b74cbf1b091e69 schema:name doi
58 schema:value 10.1007/bf02822619
59 rdf:type schema:PropertyValue
60 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
61 schema:name Engineering
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
64 schema:name Materials Engineering
65 rdf:type schema:DefinedTerm
66 sg:journal.1042541 schema:issn 1047-4838
67 1543-1851
68 schema:name JOM
69 rdf:type schema:Periodical
70 sg:pub.10.1038/187869b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018841532
71 https://doi.org/10.1038/187869b0
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/0001-6160(74)90112-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024981743
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/s0734-743x(99)00176-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034859931
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/s0921-4526(97)00753-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002302422
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/s1359-6454(98)00122-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032927417
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1063/1.110520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057658084
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1063/1.1747588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057809754
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1063/1.93645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058133784
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physrevlett.84.2901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820998
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1126/science.267.5206.1924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549913
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1557/s0883769400053252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067964161
92 rdf:type schema:CreativeWork
93 https://doi.org/10.2320/matertrans1989.31.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028544387
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
96 schema:name Department of Materials Science, California Institute of Technology, 91125, Pasadena, California
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...