A review and comparative study of upwind biased schemes for compressible flow computation. Part III: Multidimensional extension on unstructured grids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

P. R. M. Lyra, K. Morgan

ABSTRACT

The edge based Galerkin finite element formulation is used as the basic building block for the construction of multidimensional generalizations, on unstructured grids, of several higher order upwind biased procedures originally designed for the solution of the 1D compressible Euler system of equations. The use of a central type discretization for the viscous flux terms enables the simulation of multidimensional flows governed by the laminar compressible Navier Stokes equations. Numerical issues related to the development and implementation of multidimensional solution algorithms are considered. A number of inviscid and viscous flow simulations, in different flow regimes, are analyzed to enable the reader to assess the performance of the surveyed formulations. More... »

PAGES

207-256

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02818932

DOI

http://dx.doi.org/10.1007/bf02818932

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041968174


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de Engenharia Mec\u00e2nica, Universidade Federal de Pernambuco, Recife/PE 50, 740-530, Brasil", 
          "id": "http://www.grid.ac/institutes/grid.411227.3", 
          "name": [
            "Departamento de Engenharia Mec\u00e2nica, Universidade Federal de Pernambuco, Recife/PE 50, 740-530, Brasil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyra", 
        "givenName": "P. R. M.", 
        "id": "sg:person.010120447177.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010120447177.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Civil and Computational Engineering Centre School of Engineering, University of Wales, SA2 8PP, Swansea, U.K.", 
          "id": "http://www.grid.ac/institutes/grid.8155.9", 
          "name": [
            "Civil and Computational Engineering Centre School of Engineering, University of Wales, SA2 8PP, Swansea, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morgan", 
        "givenName": "K.", 
        "id": "sg:person.014565152133.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014565152133.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02736185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001481922", 
          "https://doi.org/10.1007/bf02736185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-663-14007-8_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001956144", 
          "https://doi.org/10.1007/978-3-663-14007-8_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02736212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030225343", 
          "https://doi.org/10.1007/bf02736212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-5116-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040766528", 
          "https://doi.org/10.1007/978-3-0348-5116-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004660050393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012681852", 
          "https://doi.org/10.1007/s004660050393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-51048-6_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033311194", 
          "https://doi.org/10.1007/3-540-51048-6_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00350098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022287272", 
          "https://doi.org/10.1007/bf00350098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-56394-6_201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000313433", 
          "https://doi.org/10.1007/3-540-56394-6_201"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-09", 
    "datePublishedReg": "2002-09-01", 
    "description": "The edge based Galerkin finite element formulation is used as the basic building block for the construction of multidimensional generalizations, on unstructured grids, of several higher order upwind biased procedures originally designed for the solution of the 1D compressible Euler system of equations. The use of a central type discretization for the viscous flux terms enables the simulation of multidimensional flows governed by the laminar compressible Navier Stokes equations. Numerical issues related to the development and implementation of multidimensional solution algorithms are considered. A number of inviscid and viscous flow simulations, in different flow regimes, are analyzed to enable the reader to assess the performance of the surveyed formulations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02818932", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136483", 
        "issn": [
          "1134-3060", 
          "1886-1784"
        ], 
        "name": "Archives of Computational Methods in Engineering", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "unstructured grids", 
      "finite element formulation", 
      "Galerkin finite element formulation", 
      "viscous flow simulations", 
      "viscous flux terms", 
      "different flow regimes", 
      "Navier-Stokes equations", 
      "upwind-biased scheme", 
      "compressible flow computations", 
      "compressible Navier\u2013Stokes equations", 
      "element formulation", 
      "flow simulations", 
      "flow regime", 
      "flow computations", 
      "flux terms", 
      "compressible Euler system", 
      "Stokes equations", 
      "numerical issues", 
      "multidimensional flow", 
      "type discretization", 
      "Euler system", 
      "solution algorithm", 
      "grid", 
      "multidimensional generalization", 
      "multidimensional extension", 
      "biased schemes", 
      "simulations", 
      "basic building blocks", 
      "equations", 
      "biased procedure", 
      "formulation", 
      "discretization", 
      "flow", 
      "building blocks", 
      "performance", 
      "generalization", 
      "computation", 
      "solution", 
      "comparative study", 
      "scheme", 
      "algorithm", 
      "edge", 
      "regime", 
      "construction", 
      "system", 
      "extension", 
      "implementation", 
      "terms", 
      "block", 
      "procedure", 
      "use", 
      "number", 
      "issues", 
      "development", 
      "study", 
      "readers", 
      "review"
    ], 
    "name": "A review and comparative study of upwind biased schemes for compressible flow computation. Part III: Multidimensional extension on unstructured grids", 
    "pagination": "207-256", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041968174"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02818932"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02818932", 
      "https://app.dimensions.ai/details/publication/pub.1041968174"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_349.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02818932"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02818932'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02818932'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02818932'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02818932'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      22 PREDICATES      91 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02818932 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N614d67e79aa14e6c98e4431391cf32c1
4 schema:citation sg:pub.10.1007/3-540-51048-6_6
5 sg:pub.10.1007/3-540-56394-6_201
6 sg:pub.10.1007/978-3-0348-5116-9
7 sg:pub.10.1007/978-3-663-14007-8_17
8 sg:pub.10.1007/bf00350098
9 sg:pub.10.1007/bf02736185
10 sg:pub.10.1007/bf02736212
11 sg:pub.10.1007/s004660050393
12 schema:datePublished 2002-09
13 schema:datePublishedReg 2002-09-01
14 schema:description The edge based Galerkin finite element formulation is used as the basic building block for the construction of multidimensional generalizations, on unstructured grids, of several higher order upwind biased procedures originally designed for the solution of the 1D compressible Euler system of equations. The use of a central type discretization for the viscous flux terms enables the simulation of multidimensional flows governed by the laminar compressible Navier Stokes equations. Numerical issues related to the development and implementation of multidimensional solution algorithms are considered. A number of inviscid and viscous flow simulations, in different flow regimes, are analyzed to enable the reader to assess the performance of the surveyed formulations.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N73bcdd50bcd24222aa257f07556e37f8
19 Na193cabc97ab49578bcbf11633abb888
20 sg:journal.1136483
21 schema:keywords Euler system
22 Galerkin finite element formulation
23 Navier-Stokes equations
24 Stokes equations
25 algorithm
26 basic building blocks
27 biased procedure
28 biased schemes
29 block
30 building blocks
31 comparative study
32 compressible Euler system
33 compressible Navier–Stokes equations
34 compressible flow computations
35 computation
36 construction
37 development
38 different flow regimes
39 discretization
40 edge
41 element formulation
42 equations
43 extension
44 finite element formulation
45 flow
46 flow computations
47 flow regime
48 flow simulations
49 flux terms
50 formulation
51 generalization
52 grid
53 implementation
54 issues
55 multidimensional extension
56 multidimensional flow
57 multidimensional generalization
58 number
59 numerical issues
60 performance
61 procedure
62 readers
63 regime
64 review
65 scheme
66 simulations
67 solution
68 solution algorithm
69 study
70 system
71 terms
72 type discretization
73 unstructured grids
74 upwind-biased scheme
75 use
76 viscous flow simulations
77 viscous flux terms
78 schema:name A review and comparative study of upwind biased schemes for compressible flow computation. Part III: Multidimensional extension on unstructured grids
79 schema:pagination 207-256
80 schema:productId N13a88dff59a44d6389608bf0b279203c
81 N19fddce8281843c082a690dd5794f0ba
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041968174
83 https://doi.org/10.1007/bf02818932
84 schema:sdDatePublished 2022-05-10T09:53
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N6d019ae37afe4c5f936ac21b8df57a32
87 schema:url https://doi.org/10.1007/bf02818932
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N13a88dff59a44d6389608bf0b279203c schema:name doi
92 schema:value 10.1007/bf02818932
93 rdf:type schema:PropertyValue
94 N19fddce8281843c082a690dd5794f0ba schema:name dimensions_id
95 schema:value pub.1041968174
96 rdf:type schema:PropertyValue
97 N614d67e79aa14e6c98e4431391cf32c1 rdf:first sg:person.010120447177.76
98 rdf:rest Na7ccb7fc0aae4b8c9d48c4b62499867d
99 N6d019ae37afe4c5f936ac21b8df57a32 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N73bcdd50bcd24222aa257f07556e37f8 schema:issueNumber 3
102 rdf:type schema:PublicationIssue
103 Na193cabc97ab49578bcbf11633abb888 schema:volumeNumber 9
104 rdf:type schema:PublicationVolume
105 Na7ccb7fc0aae4b8c9d48c4b62499867d rdf:first sg:person.014565152133.18
106 rdf:rest rdf:nil
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
111 schema:name Numerical and Computational Mathematics
112 rdf:type schema:DefinedTerm
113 sg:journal.1136483 schema:issn 1134-3060
114 1886-1784
115 schema:name Archives of Computational Methods in Engineering
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.010120447177.76 schema:affiliation grid-institutes:grid.411227.3
119 schema:familyName Lyra
120 schema:givenName P. R. M.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010120447177.76
122 rdf:type schema:Person
123 sg:person.014565152133.18 schema:affiliation grid-institutes:grid.8155.9
124 schema:familyName Morgan
125 schema:givenName K.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014565152133.18
127 rdf:type schema:Person
128 sg:pub.10.1007/3-540-51048-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033311194
129 https://doi.org/10.1007/3-540-51048-6_6
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/3-540-56394-6_201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000313433
132 https://doi.org/10.1007/3-540-56394-6_201
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/978-3-0348-5116-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040766528
135 https://doi.org/10.1007/978-3-0348-5116-9
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/978-3-663-14007-8_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001956144
138 https://doi.org/10.1007/978-3-663-14007-8_17
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/bf00350098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022287272
141 https://doi.org/10.1007/bf00350098
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bf02736185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001481922
144 https://doi.org/10.1007/bf02736185
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf02736212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030225343
147 https://doi.org/10.1007/bf02736212
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s004660050393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012681852
150 https://doi.org/10.1007/s004660050393
151 rdf:type schema:CreativeWork
152 grid-institutes:grid.411227.3 schema:alternateName Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, Recife/PE 50, 740-530, Brasil
153 schema:name Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, Recife/PE 50, 740-530, Brasil
154 rdf:type schema:Organization
155 grid-institutes:grid.8155.9 schema:alternateName Civil and Computational Engineering Centre School of Engineering, University of Wales, SA2 8PP, Swansea, U.K.
156 schema:name Civil and Computational Engineering Centre School of Engineering, University of Wales, SA2 8PP, Swansea, U.K.
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...