On the universal enveloping algebra ofsl2(C) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-01

AUTHORS

M. C. Prati

ABSTRACT

For the universal enveloping algebraU ofsl2(C), we consider the decompositionU≌Z⊗H. HereZ is the center ofU, generated by the (unique) Casimir operator Δ, andH is thesl2-module , where πk is the irreducible representation ofsl2 with dimension2k+1. We choose a basis inU according to this decomposition and we study the Lie algebra structure ofU over the ringZ. More... »

PAGES

25-30

References to SciGraph publications

Journal

TITLE

Il Nuovo Cimento A (1965-1970)

ISSUE

1

VOLUME

107

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02813069

DOI

http://dx.doi.org/10.1007/bf02813069

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029355671


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.470216.6", 
          "name": [
            "Scuola Normale Superiore, Pisa", 
            "INFN, Sezione di Pisa, Pisa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prati", 
        "givenName": "M. C.", 
        "id": "sg:person.01324554622.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324554622.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-66243-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014390922", 
          "https://doi.org/10.1007/978-3-642-66243-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66243-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014390922", 
          "https://doi.org/10.1007/978-3-642-66243-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01078270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031889410", 
          "https://doi.org/10.1007/bf01078270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01078270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031889410", 
          "https://doi.org/10.1007/bf01078270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1988v043n02abeh001720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058195772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567816"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-01", 
    "datePublishedReg": "1994-01-01", 
    "description": "For the universal enveloping algebraU ofsl2(C), we consider the decompositionU\u224cZ\u2297H. HereZ is the center ofU, generated by the (unique) Casimir operator \u0394, andH is thesl2-module , where \u03c0k is the irreducible representation ofsl2 with dimension2k+1. We choose a basis inU according to this decomposition and we study the Lie algebra structure ofU over the ringZ.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02813069", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1328730", 
        "issn": [
          "0369-3546", 
          "1826-9869"
        ], 
        "name": "Il Nuovo Cimento A (1965-1970)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "107"
      }
    ], 
    "name": "On the universal enveloping algebra ofsl2(C)", 
    "pagination": "25-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8bd8a1f5bbc8103ebac6ab90a4ec075285c05cd186a91ae14f2f85f0d9b9cb92"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02813069"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029355671"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02813069", 
      "https://app.dimensions.ai/details/publication/pub.1029355671"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02813069"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02813069'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02813069'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02813069'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02813069'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02813069 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0252185ea565419b98ccbb7572dc4840
4 schema:citation sg:pub.10.1007/978-3-642-66243-0
5 sg:pub.10.1007/bf01078270
6 https://doi.org/10.1070/rm1988v043n02abeh001720
7 https://doi.org/10.1090/mmono/022
8 https://doi.org/10.1090/mmono/040
9 https://doi.org/10.2307/2373130
10 schema:datePublished 1994-01
11 schema:datePublishedReg 1994-01-01
12 schema:description For the universal enveloping algebraU ofsl2(C), we consider the decompositionU≌Z⊗H. HereZ is the center ofU, generated by the (unique) Casimir operator Δ, andH is thesl2-module , where πk is the irreducible representation ofsl2 with dimension2k+1. We choose a basis inU according to this decomposition and we study the Lie algebra structure ofU over the ringZ.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N71d92033fca241f89ed27ee1b65c1af0
17 Nc54f928f549541e5b0fd2bb986b583f0
18 sg:journal.1328730
19 schema:name On the universal enveloping algebra ofsl2(C)
20 schema:pagination 25-30
21 schema:productId N5af29b3279bc4543be26e51f39926e10
22 N612329ba06fa43008b6801ad785fe342
23 N6821cc993e7f481aa61ce930ca291ebb
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029355671
25 https://doi.org/10.1007/bf02813069
26 schema:sdDatePublished 2019-04-11T13:53
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Na0924494f9a7407295f0923b43d82f3b
29 schema:url http://link.springer.com/10.1007/BF02813069
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0252185ea565419b98ccbb7572dc4840 rdf:first sg:person.01324554622.99
34 rdf:rest rdf:nil
35 N5af29b3279bc4543be26e51f39926e10 schema:name readcube_id
36 schema:value 8bd8a1f5bbc8103ebac6ab90a4ec075285c05cd186a91ae14f2f85f0d9b9cb92
37 rdf:type schema:PropertyValue
38 N612329ba06fa43008b6801ad785fe342 schema:name dimensions_id
39 schema:value pub.1029355671
40 rdf:type schema:PropertyValue
41 N6821cc993e7f481aa61ce930ca291ebb schema:name doi
42 schema:value 10.1007/bf02813069
43 rdf:type schema:PropertyValue
44 N71d92033fca241f89ed27ee1b65c1af0 schema:volumeNumber 107
45 rdf:type schema:PublicationVolume
46 Na0924494f9a7407295f0923b43d82f3b schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nc54f928f549541e5b0fd2bb986b583f0 schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1328730 schema:issn 0369-3546
57 1826-9869
58 schema:name Il Nuovo Cimento A (1965-1970)
59 rdf:type schema:Periodical
60 sg:person.01324554622.99 schema:affiliation https://www.grid.ac/institutes/grid.470216.6
61 schema:familyName Prati
62 schema:givenName M. C.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324554622.99
64 rdf:type schema:Person
65 sg:pub.10.1007/978-3-642-66243-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014390922
66 https://doi.org/10.1007/978-3-642-66243-0
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/bf01078270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031889410
69 https://doi.org/10.1007/bf01078270
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1070/rm1988v043n02abeh001720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058195772
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1090/mmono/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567799
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1090/mmono/040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567816
76 rdf:type schema:CreativeWork
77 https://doi.org/10.2307/2373130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899712
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.470216.6 schema:alternateName INFN Sezione di Pisa
80 schema:name INFN, Sezione di Pisa, Pisa
81 Scuola Normale Superiore, Pisa
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...