Dynamical Borel-Cantelli lemmas for gibbs measures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-12

AUTHORS

N. Chernov, D. Kleinbock

ABSTRACT

LetT: X→X be a deterministic dynamical system preserving a probability measure μ. A dynamical Borel-Cantelli lemma asserts that for certain sequences of subsetsAn⊃ X and μ-almost every pointx∈X the inclusionTnx∈An holds for infinitely manyn. We discuss here systems which are either symbolic (topological) Markov chain or Anosov diffeomorphisms preserving Gibbs measures. We find sufficient conditions on sequences of cylinders and rectangles, respectively, that ensure the dynamical Borel-Cantelli lemma. More... »

PAGES

1-27

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02809888

DOI

http://dx.doi.org/10.1007/bf02809888

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051172427


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Mathematics, University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernov", 
        "givenName": "N.", 
        "id": "sg:person.01117774700.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117774700.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mathematics, Rutgers University, 08854, Piscataway, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleinbock", 
        "givenName": "D.", 
        "id": "sg:person.013076036113.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076036113.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0081279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007966850", 
          "https://doi.org/10.1007/bfb0081279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0081279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007966850", 
          "https://doi.org/10.1007/bfb0081279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0081279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007966850", 
          "https://doi.org/10.1007/bfb0081279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01245179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014188543", 
          "https://doi.org/10.1007/bf01245179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220050350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016687602", 
          "https://doi.org/10.1007/s002220050350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220050350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016687602", 
          "https://doi.org/10.1007/s002220050350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220050350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016687602", 
          "https://doi.org/10.1007/s002220050350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01244320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018084714", 
          "https://doi.org/10.1007/bf01244320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004593915069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025335802", 
          "https://doi.org/10.1023/a:1004593915069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177693338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064398532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1967.20.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069063788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511608728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098701211"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "LetT: X\u2192X be a deterministic dynamical system preserving a probability measure \u03bc. A dynamical Borel-Cantelli lemma asserts that for certain sequences of subsetsAn\u2283 X and \u03bc-almost every pointx\u2208X the inclusionTnx\u2208An holds for infinitely manyn. We discuss here systems which are either symbolic (topological) Markov chain or Anosov diffeomorphisms preserving Gibbs measures. We find sufficient conditions on sequences of cylinders and rectangles, respectively, that ensure the dynamical Borel-Cantelli lemma.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02809888", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136632", 
        "issn": [
          "0021-2172", 
          "1565-8511"
        ], 
        "name": "Israel Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "122"
      }
    ], 
    "name": "Dynamical Borel-Cantelli lemmas for gibbs measures", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f3c4259ef87bfd527d89e9e46b4b790195a300d02100cbaabc1752707f3cc50f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02809888"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051172427"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02809888", 
      "https://app.dimensions.ai/details/publication/pub.1051172427"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02809888"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02809888'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02809888'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02809888'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02809888'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02809888 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nc21aa1a11df34a2698fa6c999ae17d44
4 schema:citation sg:pub.10.1007/bf01244320
5 sg:pub.10.1007/bf01245179
6 sg:pub.10.1007/bfb0081279
7 sg:pub.10.1007/s002220050350
8 sg:pub.10.1023/a:1004593915069
9 https://doi.org/10.1017/cbo9780511608728
10 https://doi.org/10.1214/aoms/1177693338
11 https://doi.org/10.2140/pjm.1967.20.109
12 schema:datePublished 2001-12
13 schema:datePublishedReg 2001-12-01
14 schema:description LetT: X→X be a deterministic dynamical system preserving a probability measure μ. A dynamical Borel-Cantelli lemma asserts that for certain sequences of subsetsAn⊃ X and μ-almost every pointx∈X the inclusionTnx∈An holds for infinitely manyn. We discuss here systems which are either symbolic (topological) Markov chain or Anosov diffeomorphisms preserving Gibbs measures. We find sufficient conditions on sequences of cylinders and rectangles, respectively, that ensure the dynamical Borel-Cantelli lemma.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N06b7b58e0889409787eb5c07c5f7fd55
19 N53d049f6d6024d5b991fa0c6b885cfc0
20 sg:journal.1136632
21 schema:name Dynamical Borel-Cantelli lemmas for gibbs measures
22 schema:pagination 1-27
23 schema:productId N9507ce8e6d9047dfbad63ec807bf4515
24 Na09694f060ac412bbfdb86254d59ea76
25 Ncf7f7eeaacf441b3ad9a20a009068331
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051172427
27 https://doi.org/10.1007/bf02809888
28 schema:sdDatePublished 2019-04-11T13:49
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N99fd2ed0c8024595bfa3bf17ee78797b
31 schema:url http://link.springer.com/10.1007/BF02809888
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N06b7b58e0889409787eb5c07c5f7fd55 schema:issueNumber 1
36 rdf:type schema:PublicationIssue
37 N1c6e104a2f01423d8146ecbd59de3aa8 rdf:first sg:person.013076036113.18
38 rdf:rest rdf:nil
39 N53d049f6d6024d5b991fa0c6b885cfc0 schema:volumeNumber 122
40 rdf:type schema:PublicationVolume
41 N9507ce8e6d9047dfbad63ec807bf4515 schema:name readcube_id
42 schema:value f3c4259ef87bfd527d89e9e46b4b790195a300d02100cbaabc1752707f3cc50f
43 rdf:type schema:PropertyValue
44 N99fd2ed0c8024595bfa3bf17ee78797b schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Na09694f060ac412bbfdb86254d59ea76 schema:name doi
47 schema:value 10.1007/bf02809888
48 rdf:type schema:PropertyValue
49 Nc21aa1a11df34a2698fa6c999ae17d44 rdf:first sg:person.01117774700.72
50 rdf:rest N1c6e104a2f01423d8146ecbd59de3aa8
51 Ncf7f7eeaacf441b3ad9a20a009068331 schema:name dimensions_id
52 schema:value pub.1051172427
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
58 schema:name Applied Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136632 schema:issn 0021-2172
61 1565-8511
62 schema:name Israel Journal of Mathematics
63 rdf:type schema:Periodical
64 sg:person.01117774700.72 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
65 schema:familyName Chernov
66 schema:givenName N.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117774700.72
68 rdf:type schema:Person
69 sg:person.013076036113.18 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
70 schema:familyName Kleinbock
71 schema:givenName D.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076036113.18
73 rdf:type schema:Person
74 sg:pub.10.1007/bf01244320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018084714
75 https://doi.org/10.1007/bf01244320
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf01245179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014188543
78 https://doi.org/10.1007/bf01245179
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bfb0081279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007966850
81 https://doi.org/10.1007/bfb0081279
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s002220050350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016687602
84 https://doi.org/10.1007/s002220050350
85 rdf:type schema:CreativeWork
86 sg:pub.10.1023/a:1004593915069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025335802
87 https://doi.org/10.1023/a:1004593915069
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1017/cbo9780511608728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098701211
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1214/aoms/1177693338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398532
92 rdf:type schema:CreativeWork
93 https://doi.org/10.2140/pjm.1967.20.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069063788
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.265892.2 schema:alternateName University of Alabama at Birmingham
96 schema:name Department of Mathematics, University of Alabama at Birmingham, 35294, Birmingham, AL, USA
97 rdf:type schema:Organization
98 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
99 schema:name Department of Mathematics, Rutgers University, 08854, Piscataway, NJ, USA
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...