Ontology type: schema:ScholarlyArticle
1992-02
AUTHORSMartin E. Glicksman, Richard N. Smith, Steven P. Marsh, Robert Kuklinski
ABSTRACTA key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This article describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical results are (1) temporal scaling laws that indicate that the average lengthscale increases as time1/3, (2) a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and (3) kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a simple macroscopic heat-transfer model of one-dimensional alloy solidification. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys. More... »
PAGES659-667
http://scigraph.springernature.com/pub.10.1007/bf02801183
DOIhttp://dx.doi.org/10.1007/bf02801183
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033006318
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Rensselaer Polytechnic Institute, 2180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"Rensselaer Polytechnic Institute, 2180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Glicksman",
"givenName": "Martin E.",
"id": "sg:person.010720014261.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Rensselaer Polytechnic Institute, 2180-3590, Troy, NY",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"Rensselaer Polytechnic Institute, 2180-3590, Troy, NY"
],
"type": "Organization"
},
"familyName": "Smith",
"givenName": "Richard N.",
"id": "sg:person.011154724311.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154724311.75"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physical Metallurgy Branch, Naval Research Laboratory, 20375-5000, Washington, DC",
"id": "http://www.grid.ac/institutes/grid.89170.37",
"name": [
"Physical Metallurgy Branch, Naval Research Laboratory, 20375-5000, Washington, DC"
],
"type": "Organization"
},
"familyName": "Marsh",
"givenName": "Steven P.",
"id": "sg:person.015445277717.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015445277717.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Naval Underwater Systems Center, 02841-5047, Newport, RI",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Naval Underwater Systems Center, 02841-5047, Newport, RI"
],
"type": "Organization"
},
"familyName": "Kuklinski",
"givenName": "Robert",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02673688",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028897146",
"https://doi.org/10.1007/bf02673688"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02645806",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028387017",
"https://doi.org/10.1007/bf02645806"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02643477",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038837495",
"https://doi.org/10.1007/bf02643477"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02648509",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023131999",
"https://doi.org/10.1007/bf02648509"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02656421",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002335688",
"https://doi.org/10.1007/bf02656421"
],
"type": "CreativeWork"
}
],
"datePublished": "1992-02",
"datePublishedReg": "1992-02-01",
"description": "A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This article describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical results are (1) temporal scaling laws that indicate that the average lengthscale increases as time1/3, (2) a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and (3) kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a simple macroscopic heat-transfer model of one-dimensional alloy solidification. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys.",
"genre": "article",
"id": "sg:pub.10.1007/bf02801183",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136292",
"issn": [
"1073-5623",
"1543-1940"
],
"name": "Metallurgical and Materials Transactions A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "23"
}
],
"keywords": [
"mushy zone",
"macroscopic heat transfer model",
"mean-field statistical theory",
"secondary dendrite arm spacing",
"heat transfer model",
"solid particle shapes",
"dendrite arm spacing",
"macroscopic heat transfer",
"main theoretical results",
"macroscopic transport processes",
"self-similar distribution",
"heat transfer",
"zone modeling",
"statistical theory",
"alloy solidification",
"arm spacing",
"phase coarsening",
"material parameters",
"Al-Cu",
"volume fraction",
"coarsening kinetics",
"adiabatic conditions",
"theoretical results",
"particle shape",
"coarsening process",
"coarsening theory",
"solid phase",
"transport processes",
"microscopic evolution",
"kinetic rate constants",
"lengthscale",
"theory",
"solidification",
"zone",
"coarsening",
"recent progress",
"decay experiments",
"spacing",
"influence",
"process",
"modeling",
"law",
"parameters",
"shape",
"dependence",
"phase",
"description",
"kinetics",
"evolution",
"transfer",
"key elements",
"model",
"conditions",
"distribution",
"rate constants",
"experiments",
"method",
"constants",
"elements",
"fraction",
"results",
"increase",
"progress",
"ability",
"aspects",
"article"
],
"name": "Mushy zone modeling with microstructural coarsening kinetics",
"pagination": "659-667",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033006318"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02801183"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02801183",
"https://app.dimensions.ai/details/publication/pub.1033006318"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T21:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_230.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02801183"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02801183'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02801183'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02801183'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02801183'
This table displays all metadata directly associated to this object as RDF triples.
170 TRIPLES
22 PREDICATES
96 URIs
83 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02801183 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | N2fe7f6eb00994871aa8ef0cd94bf712e |
4 | ″ | schema:citation | sg:pub.10.1007/bf02643477 |
5 | ″ | ″ | sg:pub.10.1007/bf02645806 |
6 | ″ | ″ | sg:pub.10.1007/bf02648509 |
7 | ″ | ″ | sg:pub.10.1007/bf02656421 |
8 | ″ | ″ | sg:pub.10.1007/bf02673688 |
9 | ″ | schema:datePublished | 1992-02 |
10 | ″ | schema:datePublishedReg | 1992-02-01 |
11 | ″ | schema:description | A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This article describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical results are (1) temporal scaling laws that indicate that the average lengthscale increases as time1/3, (2) a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and (3) kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a simple macroscopic heat-transfer model of one-dimensional alloy solidification. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N1e83d7d0e21144e6b7152febb815be46 |
16 | ″ | ″ | Nc74ed1aba52349be8ffc57d5f6650f5b |
17 | ″ | ″ | sg:journal.1136292 |
18 | ″ | schema:keywords | Al-Cu |
19 | ″ | ″ | ability |
20 | ″ | ″ | adiabatic conditions |
21 | ″ | ″ | alloy solidification |
22 | ″ | ″ | arm spacing |
23 | ″ | ″ | article |
24 | ″ | ″ | aspects |
25 | ″ | ″ | coarsening |
26 | ″ | ″ | coarsening kinetics |
27 | ″ | ″ | coarsening process |
28 | ″ | ″ | coarsening theory |
29 | ″ | ″ | conditions |
30 | ″ | ″ | constants |
31 | ″ | ″ | decay experiments |
32 | ″ | ″ | dendrite arm spacing |
33 | ″ | ″ | dependence |
34 | ″ | ″ | description |
35 | ″ | ″ | distribution |
36 | ″ | ″ | elements |
37 | ″ | ″ | evolution |
38 | ″ | ″ | experiments |
39 | ″ | ″ | fraction |
40 | ″ | ″ | heat transfer |
41 | ″ | ″ | heat transfer model |
42 | ″ | ″ | increase |
43 | ″ | ″ | influence |
44 | ″ | ″ | key elements |
45 | ″ | ″ | kinetic rate constants |
46 | ″ | ″ | kinetics |
47 | ″ | ″ | law |
48 | ″ | ″ | lengthscale |
49 | ″ | ″ | macroscopic heat transfer |
50 | ″ | ″ | macroscopic heat transfer model |
51 | ″ | ″ | macroscopic transport processes |
52 | ″ | ″ | main theoretical results |
53 | ″ | ″ | material parameters |
54 | ″ | ″ | mean-field statistical theory |
55 | ″ | ″ | method |
56 | ″ | ″ | microscopic evolution |
57 | ″ | ″ | model |
58 | ″ | ″ | modeling |
59 | ″ | ″ | mushy zone |
60 | ″ | ″ | parameters |
61 | ″ | ″ | particle shape |
62 | ″ | ″ | phase |
63 | ″ | ″ | phase coarsening |
64 | ″ | ″ | process |
65 | ″ | ″ | progress |
66 | ″ | ″ | rate constants |
67 | ″ | ″ | recent progress |
68 | ″ | ″ | results |
69 | ″ | ″ | secondary dendrite arm spacing |
70 | ″ | ″ | self-similar distribution |
71 | ″ | ″ | shape |
72 | ″ | ″ | solid particle shapes |
73 | ″ | ″ | solid phase |
74 | ″ | ″ | solidification |
75 | ″ | ″ | spacing |
76 | ″ | ″ | statistical theory |
77 | ″ | ″ | theoretical results |
78 | ″ | ″ | theory |
79 | ″ | ″ | transfer |
80 | ″ | ″ | transport processes |
81 | ″ | ″ | volume fraction |
82 | ″ | ″ | zone |
83 | ″ | ″ | zone modeling |
84 | ″ | schema:name | Mushy zone modeling with microstructural coarsening kinetics |
85 | ″ | schema:pagination | 659-667 |
86 | ″ | schema:productId | N0dfc4cdde2e549d9a8741709e377a25d |
87 | ″ | ″ | N0f73317ce06d431a921b75616014a225 |
88 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033006318 |
89 | ″ | ″ | https://doi.org/10.1007/bf02801183 |
90 | ″ | schema:sdDatePublished | 2022-06-01T21:59 |
91 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
92 | ″ | schema:sdPublisher | N668f347b080a4a86a4ec59ff42b8e058 |
93 | ″ | schema:url | https://doi.org/10.1007/bf02801183 |
94 | ″ | sgo:license | sg:explorer/license/ |
95 | ″ | sgo:sdDataset | articles |
96 | ″ | rdf:type | schema:ScholarlyArticle |
97 | N0dfc4cdde2e549d9a8741709e377a25d | schema:name | doi |
98 | ″ | schema:value | 10.1007/bf02801183 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N0f73317ce06d431a921b75616014a225 | schema:name | dimensions_id |
101 | ″ | schema:value | pub.1033006318 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | N1e83d7d0e21144e6b7152febb815be46 | schema:volumeNumber | 23 |
104 | ″ | rdf:type | schema:PublicationVolume |
105 | N29ca6f4ccdf142469f8521c8186030e1 | rdf:first | sg:person.015445277717.12 |
106 | ″ | rdf:rest | Na1e784fb9a3a47f1940eb5353953734d |
107 | N2fe7f6eb00994871aa8ef0cd94bf712e | rdf:first | sg:person.010720014261.43 |
108 | ″ | rdf:rest | N939606730fda4359801888dca0cbbb70 |
109 | N668f347b080a4a86a4ec59ff42b8e058 | schema:name | Springer Nature - SN SciGraph project |
110 | ″ | rdf:type | schema:Organization |
111 | N939606730fda4359801888dca0cbbb70 | rdf:first | sg:person.011154724311.75 |
112 | ″ | rdf:rest | N29ca6f4ccdf142469f8521c8186030e1 |
113 | Na1e784fb9a3a47f1940eb5353953734d | rdf:first | Na772cd56600c437f8be8d7e407ad5793 |
114 | ″ | rdf:rest | rdf:nil |
115 | Na772cd56600c437f8be8d7e407ad5793 | schema:affiliation | grid-institutes:None |
116 | ″ | schema:familyName | Kuklinski |
117 | ″ | schema:givenName | Robert |
118 | ″ | rdf:type | schema:Person |
119 | Nc74ed1aba52349be8ffc57d5f6650f5b | schema:issueNumber | 2 |
120 | ″ | rdf:type | schema:PublicationIssue |
121 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Engineering |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Interdisciplinary Engineering |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | sg:journal.1136292 | schema:issn | 1073-5623 |
128 | ″ | ″ | 1543-1940 |
129 | ″ | schema:name | Metallurgical and Materials Transactions A |
130 | ″ | schema:publisher | Springer Nature |
131 | ″ | rdf:type | schema:Periodical |
132 | sg:person.010720014261.43 | schema:affiliation | grid-institutes:grid.33647.35 |
133 | ″ | schema:familyName | Glicksman |
134 | ″ | schema:givenName | Martin E. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.011154724311.75 | schema:affiliation | grid-institutes:grid.33647.35 |
138 | ″ | schema:familyName | Smith |
139 | ″ | schema:givenName | Richard N. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154724311.75 |
141 | ″ | rdf:type | schema:Person |
142 | sg:person.015445277717.12 | schema:affiliation | grid-institutes:grid.89170.37 |
143 | ″ | schema:familyName | Marsh |
144 | ″ | schema:givenName | Steven P. |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015445277717.12 |
146 | ″ | rdf:type | schema:Person |
147 | sg:pub.10.1007/bf02643477 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038837495 |
148 | ″ | ″ | https://doi.org/10.1007/bf02643477 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | sg:pub.10.1007/bf02645806 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028387017 |
151 | ″ | ″ | https://doi.org/10.1007/bf02645806 |
152 | ″ | rdf:type | schema:CreativeWork |
153 | sg:pub.10.1007/bf02648509 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023131999 |
154 | ″ | ″ | https://doi.org/10.1007/bf02648509 |
155 | ″ | rdf:type | schema:CreativeWork |
156 | sg:pub.10.1007/bf02656421 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002335688 |
157 | ″ | ″ | https://doi.org/10.1007/bf02656421 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | sg:pub.10.1007/bf02673688 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028897146 |
160 | ″ | ″ | https://doi.org/10.1007/bf02673688 |
161 | ″ | rdf:type | schema:CreativeWork |
162 | grid-institutes:None | schema:alternateName | Naval Underwater Systems Center, 02841-5047, Newport, RI |
163 | ″ | schema:name | Naval Underwater Systems Center, 02841-5047, Newport, RI |
164 | ″ | rdf:type | schema:Organization |
165 | grid-institutes:grid.33647.35 | schema:alternateName | Rensselaer Polytechnic Institute, 2180-3590, Troy, NY |
166 | ″ | schema:name | Rensselaer Polytechnic Institute, 2180-3590, Troy, NY |
167 | ″ | rdf:type | schema:Organization |
168 | grid-institutes:grid.89170.37 | schema:alternateName | Physical Metallurgy Branch, Naval Research Laboratory, 20375-5000, Washington, DC |
169 | ″ | schema:name | Physical Metallurgy Branch, Naval Research Laboratory, 20375-5000, Washington, DC |
170 | ″ | rdf:type | schema:Organization |