Mushy zone modeling with microstructural coarsening kinetics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-02

AUTHORS

Martin E. Glicksman, Richard N. Smith, Steven P. Marsh, Robert Kuklinski

ABSTRACT

A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This article describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical results are (1) temporal scaling laws that indicate that the average lengthscale increases as time1/3, (2) a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and (3) kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a simple macroscopic heat-transfer model of one-dimensional alloy solidification. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys. More... »

PAGES

659-667

References to SciGraph publications

  • 1990-01. Coarsening in binary solid-liquid mixtures in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1975-01. The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1981-01. Coarsening of cobalt grains dispersed in liquid copper matrix in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1988-11. Ostwald ripening in a system with a high volume fraction of coarsening phase in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1981-06. Solute redistribution during solidification with rapid solid state diffusion in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02801183

    DOI

    http://dx.doi.org/10.1007/bf02801183

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033006318


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rensselaer Polytechnic Institute, 2180-3590, Troy, NY", 
              "id": "http://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "Rensselaer Polytechnic Institute, 2180-3590, Troy, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glicksman", 
            "givenName": "Martin E.", 
            "id": "sg:person.010720014261.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rensselaer Polytechnic Institute, 2180-3590, Troy, NY", 
              "id": "http://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "Rensselaer Polytechnic Institute, 2180-3590, Troy, NY"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "Richard N.", 
            "id": "sg:person.011154724311.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154724311.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physical Metallurgy Branch, Naval Research Laboratory, 20375-5000, Washington, DC", 
              "id": "http://www.grid.ac/institutes/grid.89170.37", 
              "name": [
                "Physical Metallurgy Branch, Naval Research Laboratory, 20375-5000, Washington, DC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marsh", 
            "givenName": "Steven P.", 
            "id": "sg:person.015445277717.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015445277717.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Naval Underwater Systems Center, 02841-5047, Newport, RI", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Naval Underwater Systems Center, 02841-5047, Newport, RI"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuklinski", 
            "givenName": "Robert", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02673688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028897146", 
              "https://doi.org/10.1007/bf02673688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028387017", 
              "https://doi.org/10.1007/bf02645806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038837495", 
              "https://doi.org/10.1007/bf02643477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02648509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023131999", 
              "https://doi.org/10.1007/bf02648509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02656421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002335688", 
              "https://doi.org/10.1007/bf02656421"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-02", 
        "datePublishedReg": "1992-02-01", 
        "description": "A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This article describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical results are (1) temporal scaling laws that indicate that the average lengthscale increases as time1/3, (2) a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and (3) kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a simple macroscopic heat-transfer model of one-dimensional alloy solidification. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02801183", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136292", 
            "issn": [
              "1073-5623", 
              "1543-1940"
            ], 
            "name": "Metallurgical and Materials Transactions A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "mushy zone", 
          "macroscopic heat transfer model", 
          "mean-field statistical theory", 
          "secondary dendrite arm spacing", 
          "heat transfer model", 
          "solid particle shapes", 
          "dendrite arm spacing", 
          "macroscopic heat transfer", 
          "main theoretical results", 
          "macroscopic transport processes", 
          "self-similar distribution", 
          "heat transfer", 
          "zone modeling", 
          "statistical theory", 
          "alloy solidification", 
          "arm spacing", 
          "phase coarsening", 
          "material parameters", 
          "Al-Cu", 
          "volume fraction", 
          "coarsening kinetics", 
          "adiabatic conditions", 
          "theoretical results", 
          "particle shape", 
          "coarsening process", 
          "coarsening theory", 
          "solid phase", 
          "transport processes", 
          "microscopic evolution", 
          "kinetic rate constants", 
          "lengthscale", 
          "theory", 
          "solidification", 
          "zone", 
          "coarsening", 
          "recent progress", 
          "decay experiments", 
          "spacing", 
          "influence", 
          "process", 
          "modeling", 
          "law", 
          "parameters", 
          "shape", 
          "dependence", 
          "phase", 
          "description", 
          "kinetics", 
          "evolution", 
          "transfer", 
          "key elements", 
          "model", 
          "conditions", 
          "distribution", 
          "rate constants", 
          "experiments", 
          "method", 
          "constants", 
          "elements", 
          "fraction", 
          "results", 
          "increase", 
          "progress", 
          "ability", 
          "aspects", 
          "article"
        ], 
        "name": "Mushy zone modeling with microstructural coarsening kinetics", 
        "pagination": "659-667", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033006318"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02801183"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02801183", 
          "https://app.dimensions.ai/details/publication/pub.1033006318"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T21:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_230.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02801183"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02801183'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02801183'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02801183'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02801183'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      22 PREDICATES      96 URIs      83 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02801183 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N2fe7f6eb00994871aa8ef0cd94bf712e
    4 schema:citation sg:pub.10.1007/bf02643477
    5 sg:pub.10.1007/bf02645806
    6 sg:pub.10.1007/bf02648509
    7 sg:pub.10.1007/bf02656421
    8 sg:pub.10.1007/bf02673688
    9 schema:datePublished 1992-02
    10 schema:datePublishedReg 1992-02-01
    11 schema:description A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This article describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical results are (1) temporal scaling laws that indicate that the average lengthscale increases as time1/3, (2) a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and (3) kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a simple macroscopic heat-transfer model of one-dimensional alloy solidification. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N1e83d7d0e21144e6b7152febb815be46
    16 Nc74ed1aba52349be8ffc57d5f6650f5b
    17 sg:journal.1136292
    18 schema:keywords Al-Cu
    19 ability
    20 adiabatic conditions
    21 alloy solidification
    22 arm spacing
    23 article
    24 aspects
    25 coarsening
    26 coarsening kinetics
    27 coarsening process
    28 coarsening theory
    29 conditions
    30 constants
    31 decay experiments
    32 dendrite arm spacing
    33 dependence
    34 description
    35 distribution
    36 elements
    37 evolution
    38 experiments
    39 fraction
    40 heat transfer
    41 heat transfer model
    42 increase
    43 influence
    44 key elements
    45 kinetic rate constants
    46 kinetics
    47 law
    48 lengthscale
    49 macroscopic heat transfer
    50 macroscopic heat transfer model
    51 macroscopic transport processes
    52 main theoretical results
    53 material parameters
    54 mean-field statistical theory
    55 method
    56 microscopic evolution
    57 model
    58 modeling
    59 mushy zone
    60 parameters
    61 particle shape
    62 phase
    63 phase coarsening
    64 process
    65 progress
    66 rate constants
    67 recent progress
    68 results
    69 secondary dendrite arm spacing
    70 self-similar distribution
    71 shape
    72 solid particle shapes
    73 solid phase
    74 solidification
    75 spacing
    76 statistical theory
    77 theoretical results
    78 theory
    79 transfer
    80 transport processes
    81 volume fraction
    82 zone
    83 zone modeling
    84 schema:name Mushy zone modeling with microstructural coarsening kinetics
    85 schema:pagination 659-667
    86 schema:productId N0dfc4cdde2e549d9a8741709e377a25d
    87 N0f73317ce06d431a921b75616014a225
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033006318
    89 https://doi.org/10.1007/bf02801183
    90 schema:sdDatePublished 2022-06-01T21:59
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N668f347b080a4a86a4ec59ff42b8e058
    93 schema:url https://doi.org/10.1007/bf02801183
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N0dfc4cdde2e549d9a8741709e377a25d schema:name doi
    98 schema:value 10.1007/bf02801183
    99 rdf:type schema:PropertyValue
    100 N0f73317ce06d431a921b75616014a225 schema:name dimensions_id
    101 schema:value pub.1033006318
    102 rdf:type schema:PropertyValue
    103 N1e83d7d0e21144e6b7152febb815be46 schema:volumeNumber 23
    104 rdf:type schema:PublicationVolume
    105 N29ca6f4ccdf142469f8521c8186030e1 rdf:first sg:person.015445277717.12
    106 rdf:rest Na1e784fb9a3a47f1940eb5353953734d
    107 N2fe7f6eb00994871aa8ef0cd94bf712e rdf:first sg:person.010720014261.43
    108 rdf:rest N939606730fda4359801888dca0cbbb70
    109 N668f347b080a4a86a4ec59ff42b8e058 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N939606730fda4359801888dca0cbbb70 rdf:first sg:person.011154724311.75
    112 rdf:rest N29ca6f4ccdf142469f8521c8186030e1
    113 Na1e784fb9a3a47f1940eb5353953734d rdf:first Na772cd56600c437f8be8d7e407ad5793
    114 rdf:rest rdf:nil
    115 Na772cd56600c437f8be8d7e407ad5793 schema:affiliation grid-institutes:None
    116 schema:familyName Kuklinski
    117 schema:givenName Robert
    118 rdf:type schema:Person
    119 Nc74ed1aba52349be8ffc57d5f6650f5b schema:issueNumber 2
    120 rdf:type schema:PublicationIssue
    121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Engineering
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Interdisciplinary Engineering
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1136292 schema:issn 1073-5623
    128 1543-1940
    129 schema:name Metallurgical and Materials Transactions A
    130 schema:publisher Springer Nature
    131 rdf:type schema:Periodical
    132 sg:person.010720014261.43 schema:affiliation grid-institutes:grid.33647.35
    133 schema:familyName Glicksman
    134 schema:givenName Martin E.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43
    136 rdf:type schema:Person
    137 sg:person.011154724311.75 schema:affiliation grid-institutes:grid.33647.35
    138 schema:familyName Smith
    139 schema:givenName Richard N.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154724311.75
    141 rdf:type schema:Person
    142 sg:person.015445277717.12 schema:affiliation grid-institutes:grid.89170.37
    143 schema:familyName Marsh
    144 schema:givenName Steven P.
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015445277717.12
    146 rdf:type schema:Person
    147 sg:pub.10.1007/bf02643477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038837495
    148 https://doi.org/10.1007/bf02643477
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf02645806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387017
    151 https://doi.org/10.1007/bf02645806
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf02648509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023131999
    154 https://doi.org/10.1007/bf02648509
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf02656421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002335688
    157 https://doi.org/10.1007/bf02656421
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf02673688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028897146
    160 https://doi.org/10.1007/bf02673688
    161 rdf:type schema:CreativeWork
    162 grid-institutes:None schema:alternateName Naval Underwater Systems Center, 02841-5047, Newport, RI
    163 schema:name Naval Underwater Systems Center, 02841-5047, Newport, RI
    164 rdf:type schema:Organization
    165 grid-institutes:grid.33647.35 schema:alternateName Rensselaer Polytechnic Institute, 2180-3590, Troy, NY
    166 schema:name Rensselaer Polytechnic Institute, 2180-3590, Troy, NY
    167 rdf:type schema:Organization
    168 grid-institutes:grid.89170.37 schema:alternateName Physical Metallurgy Branch, Naval Research Laboratory, 20375-5000, Washington, DC
    169 schema:name Physical Metallurgy Branch, Naval Research Laboratory, 20375-5000, Washington, DC
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...