Numerical computations of Liapunov exponents for a discretized one-dimensional nonlinear Klein-Gordon equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-11

AUTHORS

G. Caravati, A. Giorgilli, L. Galgani

ABSTRACT

We use the method of computing numerically the maximal Liapunov characteristics exponent in order to test the stochasticity of a particular model of coupled oscillators, describing a discretized one-dimensional nonlinear Klein-Gordon equation. Such a model was studied, from a different point of view by Fucitoet al. and by Buteraet al. The result is that a transition to stochasticity occurs when one passes from low energies to higher energies, and furthermore that the stochasticity decreases, tending to zero, at very high energies. More... »

PAGES

385-389

References to SciGraph publications

  • 1980-09. Stochasticity thresholds in a lattice field theory in IL NUOVO CIMENTO B (1971-1996)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02789596

    DOI

    http://dx.doi.org/10.1007/bf02789596

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033860560


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Dipartimento di Fisica dell\u2019Universit\u00e0, Via Celoria 16, Milano"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caravati", 
            "givenName": "G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Dipartimento di Fisica dell\u2019Universit\u00e0, Via Celoria 16, Milano"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giorgilli", 
            "givenName": "A.", 
            "id": "sg:person.010532704656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Dipartimento di Matematica dell\u2019Universit\u00e0, Via Saldini 50, Milano"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Galgani", 
            "givenName": "L.", 
            "id": "sg:person.010346707747.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02739048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037860200", 
              "https://doi.org/10.1007/bf02739048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphys:01982004305070700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056990681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.14.2338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060466055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.14.2338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060466055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.17.786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060467072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.17.786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060467072"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1983-11", 
        "datePublishedReg": "1983-11-01", 
        "description": "We use the method of computing numerically the maximal Liapunov characteristics exponent in order to test the stochasticity of a particular model of coupled oscillators, describing a discretized one-dimensional nonlinear Klein-Gordon equation. Such a model was studied, from a different point of view by Fucitoet al. and by Buteraet al. The result is that a transition to stochasticity occurs when one passes from low energies to higher energies, and furthermore that the stochasticity decreases, tending to zero, at very high energies.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02789596", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336111", 
            "issn": [
              "1827-613X"
            ], 
            "name": "Lettere al Nuovo Cimento (1971-1985)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "name": "Numerical computations of Liapunov exponents for a discretized one-dimensional nonlinear Klein-Gordon equation", 
        "pagination": "385-389", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a14d770447b54bb75997d82fe1e37496a69eee772e6d4baebf90d37d7b16d5b8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02789596"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033860560"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02789596", 
          "https://app.dimensions.ai/details/publication/pub.1033860560"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02789596"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02789596 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N30c20392a46b4429b46ff843b9bd2674
    4 schema:citation sg:pub.10.1007/bf02739048
    5 https://doi.org/10.1051/jphys:01982004305070700
    6 https://doi.org/10.1103/physreva.14.2338
    7 https://doi.org/10.1103/physreva.17.786
    8 schema:datePublished 1983-11
    9 schema:datePublishedReg 1983-11-01
    10 schema:description We use the method of computing numerically the maximal Liapunov characteristics exponent in order to test the stochasticity of a particular model of coupled oscillators, describing a discretized one-dimensional nonlinear Klein-Gordon equation. Such a model was studied, from a different point of view by Fucitoet al. and by Buteraet al. The result is that a transition to stochasticity occurs when one passes from low energies to higher energies, and furthermore that the stochasticity decreases, tending to zero, at very high energies.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N08d76efb7c5c43e9a3d3e397fb44a9ed
    15 Nc08b412e401f42bea579fd50aae1c6ae
    16 sg:journal.1336111
    17 schema:name Numerical computations of Liapunov exponents for a discretized one-dimensional nonlinear Klein-Gordon equation
    18 schema:pagination 385-389
    19 schema:productId N320c5dd0a9c94c31b2468b74c122e272
    20 Na761319b3a7943e2a1e5156a71f9b003
    21 Nd1f56199a09b416d8cce52c34d740a8d
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033860560
    23 https://doi.org/10.1007/bf02789596
    24 schema:sdDatePublished 2019-04-10T16:37
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N1232b31baf3543918f5202ce91b516d7
    27 schema:url http://link.springer.com/10.1007/BF02789596
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N08d76efb7c5c43e9a3d3e397fb44a9ed schema:issueNumber 11
    32 rdf:type schema:PublicationIssue
    33 N1232b31baf3543918f5202ce91b516d7 schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N28c1c653fa824b91a802ea99e684bac5 rdf:first sg:person.010346707747.76
    36 rdf:rest rdf:nil
    37 N30c20392a46b4429b46ff843b9bd2674 rdf:first N6298bde3fca54ffaa7dfa529e7f1703d
    38 rdf:rest Nc81ba9ae7e13441eba8eb3985f29a43f
    39 N320c5dd0a9c94c31b2468b74c122e272 schema:name dimensions_id
    40 schema:value pub.1033860560
    41 rdf:type schema:PropertyValue
    42 N6298bde3fca54ffaa7dfa529e7f1703d schema:affiliation Na94ffe4beb8b4003b9af37cbf46dce28
    43 schema:familyName Caravati
    44 schema:givenName G.
    45 rdf:type schema:Person
    46 Na761319b3a7943e2a1e5156a71f9b003 schema:name readcube_id
    47 schema:value a14d770447b54bb75997d82fe1e37496a69eee772e6d4baebf90d37d7b16d5b8
    48 rdf:type schema:PropertyValue
    49 Na94ffe4beb8b4003b9af37cbf46dce28 schema:name Dipartimento di Fisica dell’Università, Via Celoria 16, Milano
    50 rdf:type schema:Organization
    51 Nc08b412e401f42bea579fd50aae1c6ae schema:volumeNumber 38
    52 rdf:type schema:PublicationVolume
    53 Nc81ba9ae7e13441eba8eb3985f29a43f rdf:first sg:person.010532704656.30
    54 rdf:rest N28c1c653fa824b91a802ea99e684bac5
    55 Ncc40b08aeae0467e8c7372b3f71046c2 schema:name Dipartimento di Fisica dell’Università, Via Celoria 16, Milano
    56 rdf:type schema:Organization
    57 Nd1f56199a09b416d8cce52c34d740a8d schema:name doi
    58 schema:value 10.1007/bf02789596
    59 rdf:type schema:PropertyValue
    60 Ne287a5c4bf7040e28fd67dbdb4d448e4 schema:name Dipartimento di Matematica dell’Università, Via Saldini 50, Milano
    61 rdf:type schema:Organization
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Applied Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1336111 schema:issn 1827-613X
    69 schema:name Lettere al Nuovo Cimento (1971-1985)
    70 rdf:type schema:Periodical
    71 sg:person.010346707747.76 schema:affiliation Ne287a5c4bf7040e28fd67dbdb4d448e4
    72 schema:familyName Galgani
    73 schema:givenName L.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76
    75 rdf:type schema:Person
    76 sg:person.010532704656.30 schema:affiliation Ncc40b08aeae0467e8c7372b3f71046c2
    77 schema:familyName Giorgilli
    78 schema:givenName A.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
    80 rdf:type schema:Person
    81 sg:pub.10.1007/bf02739048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037860200
    82 https://doi.org/10.1007/bf02739048
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1051/jphys:01982004305070700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990681
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1103/physreva.14.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466055
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1103/physreva.17.786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467072
    89 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...