Ontology type: schema:ScholarlyArticle
1983-11
AUTHORSG. Caravati, A. Giorgilli, L. Galgani
ABSTRACTWe use the method of computing numerically the maximal Liapunov characteristics exponent in order to test the stochasticity of a particular model of coupled oscillators, describing a discretized one-dimensional nonlinear Klein-Gordon equation. Such a model was studied, from a different point of view by Fucitoet al. and by Buteraet al. The result is that a transition to stochasticity occurs when one passes from low energies to higher energies, and furthermore that the stochasticity decreases, tending to zero, at very high energies. More... »
PAGES385-389
http://scigraph.springernature.com/pub.10.1007/bf02789596
DOIhttp://dx.doi.org/10.1007/bf02789596
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033860560
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Dipartimento di Fisica dell\u2019Universit\u00e0, Via Celoria 16, Milano"
],
"type": "Organization"
},
"familyName": "Caravati",
"givenName": "G.",
"type": "Person"
},
{
"affiliation": {
"name": [
"Dipartimento di Fisica dell\u2019Universit\u00e0, Via Celoria 16, Milano"
],
"type": "Organization"
},
"familyName": "Giorgilli",
"givenName": "A.",
"id": "sg:person.010532704656.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Dipartimento di Matematica dell\u2019Universit\u00e0, Via Saldini 50, Milano"
],
"type": "Organization"
},
"familyName": "Galgani",
"givenName": "L.",
"id": "sg:person.010346707747.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02739048",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037860200",
"https://doi.org/10.1007/bf02739048"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/jphys:01982004305070700",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056990681"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.14.2338",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060466055"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.14.2338",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060466055"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.17.786",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060467072"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.17.786",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060467072"
],
"type": "CreativeWork"
}
],
"datePublished": "1983-11",
"datePublishedReg": "1983-11-01",
"description": "We use the method of computing numerically the maximal Liapunov characteristics exponent in order to test the stochasticity of a particular model of coupled oscillators, describing a discretized one-dimensional nonlinear Klein-Gordon equation. Such a model was studied, from a different point of view by Fucitoet al. and by Buteraet al. The result is that a transition to stochasticity occurs when one passes from low energies to higher energies, and furthermore that the stochasticity decreases, tending to zero, at very high energies.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf02789596",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1336111",
"issn": [
"1827-613X"
],
"name": "Lettere al Nuovo Cimento (1971-1985)",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "38"
}
],
"name": "Numerical computations of Liapunov exponents for a discretized one-dimensional nonlinear Klein-Gordon equation",
"pagination": "385-389",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"a14d770447b54bb75997d82fe1e37496a69eee772e6d4baebf90d37d7b16d5b8"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02789596"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033860560"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02789596",
"https://app.dimensions.ai/details/publication/pub.1033860560"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T16:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000489.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/BF02789596"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'
This table displays all metadata directly associated to this object as RDF triples.
89 TRIPLES
21 PREDICATES
31 URIs
19 LITERALS
7 BLANK NODES