Numerical computations of Liapunov exponents for a discretized one-dimensional nonlinear Klein-Gordon equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-11

AUTHORS

G. Caravati, A. Giorgilli, L. Galgani

ABSTRACT

We use the method of computing numerically the maximal Liapunov characteristics exponent in order to test the stochasticity of a particular model of coupled oscillators, describing a discretized one-dimensional nonlinear Klein-Gordon equation. Such a model was studied, from a different point of view by Fucitoet al. and by Buteraet al. The result is that a transition to stochasticity occurs when one passes from low energies to higher energies, and furthermore that the stochasticity decreases, tending to zero, at very high energies. More... »

PAGES

385-389

References to SciGraph publications

  • 1980-09. Stochasticity thresholds in a lattice field theory in IL NUOVO CIMENTO B (1971-1996)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02789596

    DOI

    http://dx.doi.org/10.1007/bf02789596

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033860560


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Dipartimento di Fisica dell\u2019Universit\u00e0, Via Celoria 16, Milano"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caravati", 
            "givenName": "G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Dipartimento di Fisica dell\u2019Universit\u00e0, Via Celoria 16, Milano"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giorgilli", 
            "givenName": "A.", 
            "id": "sg:person.010532704656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Dipartimento di Matematica dell\u2019Universit\u00e0, Via Saldini 50, Milano"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Galgani", 
            "givenName": "L.", 
            "id": "sg:person.010346707747.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02739048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037860200", 
              "https://doi.org/10.1007/bf02739048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphys:01982004305070700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056990681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.14.2338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060466055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.14.2338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060466055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.17.786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060467072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.17.786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060467072"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1983-11", 
        "datePublishedReg": "1983-11-01", 
        "description": "We use the method of computing numerically the maximal Liapunov characteristics exponent in order to test the stochasticity of a particular model of coupled oscillators, describing a discretized one-dimensional nonlinear Klein-Gordon equation. Such a model was studied, from a different point of view by Fucitoet al. and by Buteraet al. The result is that a transition to stochasticity occurs when one passes from low energies to higher energies, and furthermore that the stochasticity decreases, tending to zero, at very high energies.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02789596", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336111", 
            "issn": [
              "1827-613X"
            ], 
            "name": "Lettere al Nuovo Cimento (1971-1985)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "name": "Numerical computations of Liapunov exponents for a discretized one-dimensional nonlinear Klein-Gordon equation", 
        "pagination": "385-389", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a14d770447b54bb75997d82fe1e37496a69eee772e6d4baebf90d37d7b16d5b8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02789596"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033860560"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02789596", 
          "https://app.dimensions.ai/details/publication/pub.1033860560"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02789596"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02789596'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02789596 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N276b024f5fbd4392a8e5c9525913e9d9
    4 schema:citation sg:pub.10.1007/bf02739048
    5 https://doi.org/10.1051/jphys:01982004305070700
    6 https://doi.org/10.1103/physreva.14.2338
    7 https://doi.org/10.1103/physreva.17.786
    8 schema:datePublished 1983-11
    9 schema:datePublishedReg 1983-11-01
    10 schema:description We use the method of computing numerically the maximal Liapunov characteristics exponent in order to test the stochasticity of a particular model of coupled oscillators, describing a discretized one-dimensional nonlinear Klein-Gordon equation. Such a model was studied, from a different point of view by Fucitoet al. and by Buteraet al. The result is that a transition to stochasticity occurs when one passes from low energies to higher energies, and furthermore that the stochasticity decreases, tending to zero, at very high energies.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N77ec4cbeb2284ebba5355acfca0a1b3e
    15 Nd51f53b0dd1544aeb4689fbc83fff329
    16 sg:journal.1336111
    17 schema:name Numerical computations of Liapunov exponents for a discretized one-dimensional nonlinear Klein-Gordon equation
    18 schema:pagination 385-389
    19 schema:productId N8c509e78550d49b192ff69d978d228a9
    20 Ne31ead0d622a4e0f92032a879f82e069
    21 Ne76b50080dd241c19ea6c0c88c6af076
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033860560
    23 https://doi.org/10.1007/bf02789596
    24 schema:sdDatePublished 2019-04-10T16:37
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N68ccbd2e002e495baa8d38008c7dd37d
    27 schema:url http://link.springer.com/10.1007/BF02789596
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N0bddfabee9854e7e8b85310f1bd599c6 rdf:first sg:person.010346707747.76
    32 rdf:rest rdf:nil
    33 N25da31f7879a4cd2968b17d26ad7676b schema:name Dipartimento di Fisica dell’Università, Via Celoria 16, Milano
    34 rdf:type schema:Organization
    35 N276b024f5fbd4392a8e5c9525913e9d9 rdf:first Nf971339551e04d49a5ce0063cd8741b8
    36 rdf:rest Ned96aa6065de4a62b363b7ceffa37766
    37 N62b66914f8e1446497a11e306dfc0321 schema:name Dipartimento di Matematica dell’Università, Via Saldini 50, Milano
    38 rdf:type schema:Organization
    39 N68ccbd2e002e495baa8d38008c7dd37d schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N6a7890ffe8dd453ca4514d017de1616a schema:name Dipartimento di Fisica dell’Università, Via Celoria 16, Milano
    42 rdf:type schema:Organization
    43 N77ec4cbeb2284ebba5355acfca0a1b3e schema:volumeNumber 38
    44 rdf:type schema:PublicationVolume
    45 N8c509e78550d49b192ff69d978d228a9 schema:name readcube_id
    46 schema:value a14d770447b54bb75997d82fe1e37496a69eee772e6d4baebf90d37d7b16d5b8
    47 rdf:type schema:PropertyValue
    48 Nd51f53b0dd1544aeb4689fbc83fff329 schema:issueNumber 11
    49 rdf:type schema:PublicationIssue
    50 Ne31ead0d622a4e0f92032a879f82e069 schema:name dimensions_id
    51 schema:value pub.1033860560
    52 rdf:type schema:PropertyValue
    53 Ne76b50080dd241c19ea6c0c88c6af076 schema:name doi
    54 schema:value 10.1007/bf02789596
    55 rdf:type schema:PropertyValue
    56 Ned96aa6065de4a62b363b7ceffa37766 rdf:first sg:person.010532704656.30
    57 rdf:rest N0bddfabee9854e7e8b85310f1bd599c6
    58 Nf971339551e04d49a5ce0063cd8741b8 schema:affiliation N25da31f7879a4cd2968b17d26ad7676b
    59 schema:familyName Caravati
    60 schema:givenName G.
    61 rdf:type schema:Person
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Applied Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1336111 schema:issn 1827-613X
    69 schema:name Lettere al Nuovo Cimento (1971-1985)
    70 rdf:type schema:Periodical
    71 sg:person.010346707747.76 schema:affiliation N62b66914f8e1446497a11e306dfc0321
    72 schema:familyName Galgani
    73 schema:givenName L.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76
    75 rdf:type schema:Person
    76 sg:person.010532704656.30 schema:affiliation N6a7890ffe8dd453ca4514d017de1616a
    77 schema:familyName Giorgilli
    78 schema:givenName A.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
    80 rdf:type schema:Person
    81 sg:pub.10.1007/bf02739048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037860200
    82 https://doi.org/10.1007/bf02739048
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1051/jphys:01982004305070700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990681
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1103/physreva.14.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466055
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1103/physreva.17.786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467072
    89 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...