Lowering of proton mass with respect to neutron state ing′-quark electromagnetic soliton theory—II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-03

AUTHORS

J. -P. M. Lebrun

ABSTRACT

A rather careful derivation of the electromagnetic mass splitting is presented, in the generalization of electrodynamics suitable for magnetically charged CA quarks found by the author. It relies on the conserved form of the electromagnetic current derived precedingly and the modification of the partial conservation of the axial current. This affords to relate a continued quark-nucleon collision matrix element to the desired Green’s function for e.m. mass splitting in a one-photon exchange model. A special infinite momentum limit must be considered to obtain a finite result as a Poincaré-Volterra double pole residue in any pair of complex momentum variables. In this limit, an eight-dimensional integral permits reduction of quark algebra using equal-time canonical commutators and Lie CA commutators—without Schwinger terms—giving relationship to the already treated π+π- mass splitting. A skew term is shown to prevail in this process and a finite consistent result:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\delta M_{\cal N} \sim - \frac{1}{8}\frac{{\alpha m_\rho ^2 }}{{m_\pi }}\left( {\frac{\alpha }{{4_\pi }}} \right)\left( {\frac{{f_\pi }}{{m_q }}} \right)\left( {\frac{{M_{\cal N} }}{{m_\pi }}} \right) \sim 2MeV$$ \end{document} compares favourably with δMπ∼αmρ2/4mπ∼5MeV in the pion case. More... »

PAGES

395-407

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02789424

DOI

http://dx.doi.org/10.1007/bf02789424

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042892194


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "F.N.R.S., Facult\u00e9 des Sciences, Universit\u00e9 de Li\u00e8ge, Li\u00e8ge, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4861.b", 
          "name": [
            "F.N.R.S., Facult\u00e9 des Sciences, Universit\u00e9 de Li\u00e8ge, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebrun", 
        "givenName": "J. -P. M.", 
        "id": "sg:person.010335762521.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335762521.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02819304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053574615", 
          "https://doi.org/10.1007/bf02819304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02789494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039341640", 
          "https://doi.org/10.1007/bf02789494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02813326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008786617", 
          "https://doi.org/10.1007/bf02813326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02813653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025123547", 
          "https://doi.org/10.1007/bf02813653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-03", 
    "datePublishedReg": "1989-03-01", 
    "description": "A rather careful derivation of the electromagnetic mass splitting is presented, in the generalization of electrodynamics suitable for magnetically charged CA quarks found by the author. It relies on the conserved form of the electromagnetic current derived precedingly and the modification of the partial conservation of the axial current. This affords to relate a continued quark-nucleon collision matrix element to the desired Green\u2019s function for e.m. mass splitting in a one-photon exchange model. A special infinite momentum limit must be considered to obtain a finite result as a Poincar\u00e9-Volterra double pole residue in any pair of complex momentum variables. In this limit, an eight-dimensional integral permits reduction of quark algebra using equal-time canonical commutators and Lie CA commutators\u2014without Schwinger terms\u2014giving relationship to the already treated \u03c0+\u03c0- mass splitting. A skew term is shown to prevail in this process and a finite consistent result:\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n\n$$\\delta M_{\\cal N}  \\sim  - \\frac{1}{8}\\frac{{\\alpha m_\\rho ^2 }}{{m_\\pi  }}\\left( {\\frac{\\alpha }{{4_\\pi  }}} \\right)\\left( {\\frac{{f_\\pi  }}{{m_q }}} \\right)\\left( {\\frac{{M_{\\cal N} }}{{m_\\pi  }}} \\right) \\sim 2MeV$$\n\n\\end{document} compares favourably with \u03b4M\u03c0\u223c\u03b1m\u03c12/4m\u03c0\u223c5MeV in the pion case.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02789424", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336107", 
        "issn": [
          "1826-9869"
        ], 
        "name": "Il Nuovo Cimento A (1971-1996)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "101"
      }
    ], 
    "keywords": [
      "function", 
      "reduction", 
      "cases", 
      "mass", 
      "authors", 
      "variables", 
      "relationship", 
      "modification", 
      "results", 
      "form", 
      "current", 
      "model", 
      "respect", 
      "limit", 
      "residues", 
      "terms", 
      "pairs", 
      "process", 
      "elements", 
      "derivation", 
      "partial conservation", 
      "careful derivation", 
      "splitting", 
      "generalization", 
      "conservation", 
      "pion case", 
      "exchange model", 
      "theory", 
      "electromagnetic mass splitting", 
      "electromagnetic current", 
      "axial current", 
      "mass splitting", 
      "matrix elements", 
      "algebra", 
      "commutators", 
      "proton mass", 
      "soliton theory", 
      "generalization of electrodynamics", 
      "electrodynamics", 
      "CA quarks", 
      "quarks", 
      "continued quark-nucleon collision matrix element", 
      "quark-nucleon collision matrix element", 
      "collision matrix element", 
      "Green's function", 
      "one-photon exchange model", 
      "special infinite momentum limit", 
      "infinite momentum limit", 
      "momentum limit", 
      "finite results", 
      "Poincar\u00e9-Volterra double pole residue", 
      "double pole residue", 
      "pole residues", 
      "complex momentum variables", 
      "momentum variables", 
      "eight-dimensional integral permits reduction", 
      "integral permits reduction", 
      "permits reduction", 
      "quark algebra", 
      "equal-time canonical commutators", 
      "canonical commutators", 
      "Lie CA commutators", 
      "CA commutators", 
      "Schwinger terms\u2014giving relationship", 
      "terms\u2014giving relationship", 
      "skew terms", 
      "neutron state ing\u2032-quark electromagnetic soliton theory", 
      "state ing\u2032-quark electromagnetic soliton theory", 
      "ing\u2032-quark electromagnetic soliton theory", 
      "electromagnetic soliton theory"
    ], 
    "name": "Lowering of proton mass with respect to neutron state ing\u2032-quark electromagnetic soliton theory\u2014II", 
    "pagination": "395-407", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042892194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02789424"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02789424", 
      "https://app.dimensions.ai/details/publication/pub.1042892194"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_193.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02789424"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02789424'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02789424'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02789424'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02789424'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      22 PREDICATES      100 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02789424 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author N0e326f7dd8f448389902ee951f343084
4 schema:citation sg:pub.10.1007/bf02789494
5 sg:pub.10.1007/bf02813326
6 sg:pub.10.1007/bf02813653
7 sg:pub.10.1007/bf02819304
8 schema:datePublished 1989-03
9 schema:datePublishedReg 1989-03-01
10 schema:description A rather careful derivation of the electromagnetic mass splitting is presented, in the generalization of electrodynamics suitable for magnetically charged CA quarks found by the author. It relies on the conserved form of the electromagnetic current derived precedingly and the modification of the partial conservation of the axial current. This affords to relate a continued quark-nucleon collision matrix element to the desired Green’s function for e.m. mass splitting in a one-photon exchange model. A special infinite momentum limit must be considered to obtain a finite result as a Poincaré-Volterra double pole residue in any pair of complex momentum variables. In this limit, an eight-dimensional integral permits reduction of quark algebra using equal-time canonical commutators and Lie CA commutators—without Schwinger terms—giving relationship to the already treated π+π- mass splitting. A skew term is shown to prevail in this process and a finite consistent result:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\delta M_{\cal N} \sim - \frac{1}{8}\frac{{\alpha m_\rho ^2 }}{{m_\pi }}\left( {\frac{\alpha }{{4_\pi }}} \right)\left( {\frac{{f_\pi }}{{m_q }}} \right)\left( {\frac{{M_{\cal N} }}{{m_\pi }}} \right) \sim 2MeV$$ \end{document} compares favourably with δMπ∼αmρ2/4mπ∼5MeV in the pion case.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N07b7550402c243df84aef5a5b75af1e2
15 Ne839c2b3f38b4f3ead0f703e085adbe7
16 sg:journal.1336107
17 schema:keywords CA commutators
18 CA quarks
19 Green's function
20 Lie CA commutators
21 Poincaré-Volterra double pole residue
22 Schwinger terms—giving relationship
23 algebra
24 authors
25 axial current
26 canonical commutators
27 careful derivation
28 cases
29 collision matrix element
30 commutators
31 complex momentum variables
32 conservation
33 continued quark-nucleon collision matrix element
34 current
35 derivation
36 double pole residue
37 eight-dimensional integral permits reduction
38 electrodynamics
39 electromagnetic current
40 electromagnetic mass splitting
41 electromagnetic soliton theory
42 elements
43 equal-time canonical commutators
44 exchange model
45 finite results
46 form
47 function
48 generalization
49 generalization of electrodynamics
50 infinite momentum limit
51 ing′-quark electromagnetic soliton theory
52 integral permits reduction
53 limit
54 mass
55 mass splitting
56 matrix elements
57 model
58 modification
59 momentum limit
60 momentum variables
61 neutron state ing′-quark electromagnetic soliton theory
62 one-photon exchange model
63 pairs
64 partial conservation
65 permits reduction
66 pion case
67 pole residues
68 process
69 proton mass
70 quark algebra
71 quark-nucleon collision matrix element
72 quarks
73 reduction
74 relationship
75 residues
76 respect
77 results
78 skew terms
79 soliton theory
80 special infinite momentum limit
81 splitting
82 state ing′-quark electromagnetic soliton theory
83 terms
84 terms—giving relationship
85 theory
86 variables
87 schema:name Lowering of proton mass with respect to neutron state ing′-quark electromagnetic soliton theory—II
88 schema:pagination 395-407
89 schema:productId N3fe96c59e8df44e69176f946be79fe2d
90 N5905f522d479464aa694d9f069dacf77
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042892194
92 https://doi.org/10.1007/bf02789424
93 schema:sdDatePublished 2021-12-01T19:06
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N8ca73799427f4a1ba8dc110146cbaf8c
96 schema:url https://doi.org/10.1007/bf02789424
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N07b7550402c243df84aef5a5b75af1e2 schema:issueNumber 3
101 rdf:type schema:PublicationIssue
102 N0e326f7dd8f448389902ee951f343084 rdf:first sg:person.010335762521.18
103 rdf:rest rdf:nil
104 N3fe96c59e8df44e69176f946be79fe2d schema:name dimensions_id
105 schema:value pub.1042892194
106 rdf:type schema:PropertyValue
107 N5905f522d479464aa694d9f069dacf77 schema:name doi
108 schema:value 10.1007/bf02789424
109 rdf:type schema:PropertyValue
110 N8ca73799427f4a1ba8dc110146cbaf8c schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Ne839c2b3f38b4f3ead0f703e085adbe7 schema:volumeNumber 101
113 rdf:type schema:PublicationVolume
114 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
115 schema:name Chemical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
118 schema:name Macromolecular and Materials Chemistry
119 rdf:type schema:DefinedTerm
120 sg:journal.1336107 schema:issn 1826-9869
121 schema:name Il Nuovo Cimento A (1971-1996)
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.010335762521.18 schema:affiliation grid-institutes:grid.4861.b
125 schema:familyName Lebrun
126 schema:givenName J. -P. M.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335762521.18
128 rdf:type schema:Person
129 sg:pub.10.1007/bf02789494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039341640
130 https://doi.org/10.1007/bf02789494
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf02813326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008786617
133 https://doi.org/10.1007/bf02813326
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02813653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025123547
136 https://doi.org/10.1007/bf02813653
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf02819304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053574615
139 https://doi.org/10.1007/bf02819304
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.4861.b schema:alternateName F.N.R.S., Faculté des Sciences, Université de Liège, Liège, Belgium
142 schema:name F.N.R.S., Faculté des Sciences, Université de Liège, Liège, Belgium
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...