De Bruijn’s question on the zeros of Fourier transforms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-12

AUTHORS

Haseo Ki, Young-One Kim

ABSTRACT

Letf(z) be a real entire function of genus 1*, δ≥0, and suppose that for each ε>0, all but a finite number of the zeros off(z) lie in the strip |Imz| ≤δ+ε. Let λ be a positive constant such that. It is shown that for each ε>0, all but a finite number of the zeros of the entire function lie in the strip and if Δ2 < 2λ, then all but a finite number of the zeros of e−λD2f(z) are real and simple. As a consequence, de Bruijn's question whether the functions eγt2,λ>0, are strong universal factors is answered affirmatively. More... »

PAGES

369-387

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02788795

DOI

http://dx.doi.org/10.1007/bf02788795

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012432770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Mathematics, Yonsei University, 120-749, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ki", 
        "givenName": "Haseo", 
        "id": "sg:person.013747505771.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747505771.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Mathematics, Seoul National University, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young-One", 
        "id": "sg:person.013173561433.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173561433.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9939-1976-0434982-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017600975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.1994.1334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032072375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032334456", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-6292-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032334456", 
          "https://doi.org/10.1007/978-1-4757-6292-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-6292-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032334456", 
          "https://doi.org/10.1007/978-1-4757-6292-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02422380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033322541", 
          "https://doi.org/10.1007/bf02422380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1915.145.224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036055579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1927.158.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039928289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-96-03083-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050388383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qmath/os-1.1.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059989552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-00-10413-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-50-01720-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064416786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567783"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-12", 
    "datePublishedReg": "2003-12-01", 
    "description": "Letf(z) be a real entire function of genus 1*, \u03b4\u22650, and suppose that for each \u03b5>0, all but a finite number of the zeros off(z) lie in the strip |Imz| \u2264\u03b4+\u03b5. Let \u03bb be a positive constant such that. It is shown that for each \u03b5>0, all but a finite number of the zeros of the entire function lie in the strip and if \u03942 < 2\u03bb, then all but a finite number of the zeros of e\u2212\u03bbD2f(z) are real and simple. As a consequence, de Bruijn's question whether the functions e\u03b3t2,\u03bb>0, are strong universal factors is answered affirmatively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02788795", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136189", 
        "issn": [
          "0021-7670", 
          "1565-8538"
        ], 
        "name": "Journal d'Analyse Math\u00e9matique", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "De Bruijn\u2019s question on the zeros of Fourier transforms", 
    "pagination": "369-387", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3b3b8b7fbbd1364a07426878ae0f1f0526220e63f0b1e3092be88ed336066871"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02788795"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012432770"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02788795", 
      "https://app.dimensions.ai/details/publication/pub.1012432770"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02788795"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02788795'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02788795'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02788795'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02788795'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02788795 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N669f92dadf4b4020b196f47b316e3818
4 schema:citation sg:pub.10.1007/978-1-4757-6292-1
5 sg:pub.10.1007/bf02422380
6 https://app.dimensions.ai/details/publication/pub.1032334456
7 https://doi.org/10.1006/jmaa.1994.1334
8 https://doi.org/10.1090/mmono/005
9 https://doi.org/10.1090/s0002-9939-1976-0434982-5
10 https://doi.org/10.1090/s0002-9939-96-03083-3
11 https://doi.org/10.1093/qmath/os-1.1.21
12 https://doi.org/10.1215/s0012-7094-00-10413-9
13 https://doi.org/10.1215/s0012-7094-50-01720-0
14 https://doi.org/10.1515/crll.1915.145.224
15 https://doi.org/10.1515/crll.1927.158.6
16 schema:datePublished 2003-12
17 schema:datePublishedReg 2003-12-01
18 schema:description Letf(z) be a real entire function of genus 1*, δ≥0, and suppose that for each ε>0, all but a finite number of the zeros off(z) lie in the strip |Imz| ≤δ+ε. Let λ be a positive constant such that. It is shown that for each ε>0, all but a finite number of the zeros of the entire function lie in the strip and if Δ2 < 2λ, then all but a finite number of the zeros of e−λD2f(z) are real and simple. As a consequence, de Bruijn's question whether the functions eγt2,λ>0, are strong universal factors is answered affirmatively.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N357199eb5abb459184df15f330c9ea2b
23 N536df606eb9046faa040239937f86023
24 sg:journal.1136189
25 schema:name De Bruijn’s question on the zeros of Fourier transforms
26 schema:pagination 369-387
27 schema:productId N2f2d5dda7a374ce4bf5db6d4186cc992
28 N6a1ea92fd9e34dbc8951a69fc68e80fd
29 Nee72fa73a8424dc6a6a3b6bd09ece608
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012432770
31 https://doi.org/10.1007/bf02788795
32 schema:sdDatePublished 2019-04-11T13:58
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N3dfc0782b1db4426a800c74031725415
35 schema:url http://link.springer.com/10.1007%2FBF02788795
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N2f2d5dda7a374ce4bf5db6d4186cc992 schema:name doi
40 schema:value 10.1007/bf02788795
41 rdf:type schema:PropertyValue
42 N357199eb5abb459184df15f330c9ea2b schema:issueNumber 1
43 rdf:type schema:PublicationIssue
44 N3dfc0782b1db4426a800c74031725415 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N536df606eb9046faa040239937f86023 schema:volumeNumber 91
47 rdf:type schema:PublicationVolume
48 N669f92dadf4b4020b196f47b316e3818 rdf:first sg:person.013747505771.63
49 rdf:rest Nb7244eadacfd4def9e311085378c4977
50 N6a1ea92fd9e34dbc8951a69fc68e80fd schema:name readcube_id
51 schema:value 3b3b8b7fbbd1364a07426878ae0f1f0526220e63f0b1e3092be88ed336066871
52 rdf:type schema:PropertyValue
53 Nb7244eadacfd4def9e311085378c4977 rdf:first sg:person.013173561433.03
54 rdf:rest rdf:nil
55 Nee72fa73a8424dc6a6a3b6bd09ece608 schema:name dimensions_id
56 schema:value pub.1012432770
57 rdf:type schema:PropertyValue
58 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
59 schema:name Psychology and Cognitive Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
62 schema:name Psychology
63 rdf:type schema:DefinedTerm
64 sg:journal.1136189 schema:issn 0021-7670
65 1565-8538
66 schema:name Journal d'Analyse Mathématique
67 rdf:type schema:Periodical
68 sg:person.013173561433.03 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
69 schema:familyName Kim
70 schema:givenName Young-One
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173561433.03
72 rdf:type schema:Person
73 sg:person.013747505771.63 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
74 schema:familyName Ki
75 schema:givenName Haseo
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747505771.63
77 rdf:type schema:Person
78 sg:pub.10.1007/978-1-4757-6292-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032334456
79 https://doi.org/10.1007/978-1-4757-6292-1
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf02422380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033322541
82 https://doi.org/10.1007/bf02422380
83 rdf:type schema:CreativeWork
84 https://app.dimensions.ai/details/publication/pub.1032334456 schema:CreativeWork
85 https://doi.org/10.1006/jmaa.1994.1334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032072375
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1090/mmono/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567783
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1090/s0002-9939-1976-0434982-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017600975
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1090/s0002-9939-96-03083-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050388383
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1093/qmath/os-1.1.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059989552
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1215/s0012-7094-00-10413-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415122
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1215/s0012-7094-50-01720-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064416786
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1515/crll.1915.145.224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036055579
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1515/crll.1927.158.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039928289
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
104 schema:name Department of Mathematics, Yonsei University, 120-749, Seoul, Korea
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
107 schema:name Department of Mathematics, Seoul National University, 151-742, Seoul, Korea
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...