Ontology type: schema:ScholarlyArticle
1995-12
AUTHORS ABSTRACT
We consider the nonlinear Schrödinger equation (NLS) (see below) with a general “potential”F(u), for which there are in general no conservation laws. The main assumption onF(u) is a growth rateO(|u|k) for large |u|, in addition to some smoothness depending on the problem considered. A uniqueness theorem is proved with minimal smoothness assumption onF andu, which is useful in eliminating the “auxiliary conditions” in many cases. A new local existence theorem forHS-solutions is proved using an auxiliary space of Lebesgue type (rather than Besov type); here the main assumption is thatk≤1+4/(m−2s) ifs
281-306
http://scigraph.springernature.com/pub.10.1007/bf02787794
DOIhttp://dx.doi.org/10.1007/bf02787794
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020685524
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of California, Berkeley",
"id": "https://www.grid.ac/institutes/grid.47840.3f",
"name": [
"Department of Mathematics, University of California, 94720, Berkeley, CA, USA"
],
"type": "Organization"
},
"familyName": "Kato",
"givenName": "Tosio",
"id": "sg:person.0672636204.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01174182",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005099440",
"https://doi.org/10.1007/bf01174182"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01174182",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005099440",
"https://doi.org/10.1007/bf01174182"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00387713",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025071719",
"https://doi.org/10.1007/bf00387713"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00387713",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025071719",
"https://doi.org/10.1007/bf00387713"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0362-546x(90)90023-a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027176052"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-1236(91)90103-c",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038124043"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1039079517",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-66451-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039079517",
"https://doi.org/10.1007/978-3-642-66451-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-66451-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039079517",
"https://doi.org/10.1007/978-3-642-66451-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-51783-9_22",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039537310",
"https://doi.org/10.1007/3-540-51783-9_22"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0362-546x(87)90003-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039787182"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00281355",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044297773",
"https://doi.org/10.1007/bf00281355"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00281355",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044297773",
"https://doi.org/10.1007/bf00281355"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0294-1449(16)30399-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084044626"
],
"type": "CreativeWork"
}
],
"datePublished": "1995-12",
"datePublishedReg": "1995-12-01",
"description": "We consider the nonlinear Schr\u00f6dinger equation (NLS) (see below) with a general \u201cpotential\u201dF(u), for which there are in general no conservation laws. The main assumption onF(u) is a growth rateO(|u|k) for large |u|, in addition to some smoothness depending on the problem considered. A uniqueness theorem is proved with minimal smoothness assumption onF andu, which is useful in eliminating the \u201cauxiliary conditions\u201d in many cases. A new local existence theorem forHS-solutions is proved using an auxiliary space of Lebesgue type (rather than Besov type); here the main assumption is thatk\u22641+4/(m\u22122s) ifsm/2). Moreover, a general existence theorem is proved for globalHS-solutions with small initial data, under the main additional condition thatF(u)=O(|u|1+4/m) for small |u|; in particularF(u) need not be (quasi-) homogeneous or in the critical case. The results are valid for alls\u22650 ifm\u22646; there are some restrictions ifm\u22657 and ifF(u) isnot a polynomial inu and.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf02787794",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136189",
"issn": [
"0021-7670",
"1565-8538"
],
"name": "Journal d'Analyse Math\u00e9matique",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "67"
}
],
"name": "On nonlinear Schr\u00f6dinger equations, II.HS-solutions and unconditional well-posedness",
"pagination": "281-306",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"628f7cd080ceab4785660a376cae74e57ee0d3157c6d1dc8ed068f06f9b6d70b"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02787794"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020685524"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02787794",
"https://app.dimensions.ai/details/publication/pub.1020685524"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:57",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2FBF02787794"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02787794'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02787794'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02787794'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02787794'
This table displays all metadata directly associated to this object as RDF triples.
95 TRIPLES
21 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES