On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-12

AUTHORS

Tosio Kato

ABSTRACT

We consider the nonlinear Schrödinger equation (NLS) (see below) with a general “potential”F(u), for which there are in general no conservation laws. The main assumption onF(u) is a growth rateO(|u|k) for large |u|, in addition to some smoothness depending on the problem considered. A uniqueness theorem is proved with minimal smoothness assumption onF andu, which is useful in eliminating the “auxiliary conditions” in many cases. A new local existence theorem forHS-solutions is proved using an auxiliary space of Lebesgue type (rather than Besov type); here the main assumption is thatk≤1+4/(m−2s) ifsm/2). Moreover, a general existence theorem is proved for globalHS-solutions with small initial data, under the main additional condition thatF(u)=O(|u|1+4/m) for small |u|; in particularF(u) need not be (quasi-) homogeneous or in the critical case. The results are valid for alls≥0 ifm≤6; there are some restrictions ifm≥7 and ifF(u) isnot a polynomial inu and. More... »

PAGES

281-306

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02787794

DOI

http://dx.doi.org/10.1007/bf02787794

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020685524


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Mathematics, University of California, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Tosio", 
        "id": "sg:person.0672636204.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01174182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005099440", 
          "https://doi.org/10.1007/bf01174182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01174182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005099440", 
          "https://doi.org/10.1007/bf01174182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00387713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025071719", 
          "https://doi.org/10.1007/bf00387713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00387713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025071719", 
          "https://doi.org/10.1007/bf00387713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(90)90023-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027176052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(91)90103-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038124043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039079517", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66451-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039079517", 
          "https://doi.org/10.1007/978-3-642-66451-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66451-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039079517", 
          "https://doi.org/10.1007/978-3-642-66451-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-51783-9_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039537310", 
          "https://doi.org/10.1007/3-540-51783-9_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(87)90003-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039787182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044297773", 
          "https://doi.org/10.1007/bf00281355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044297773", 
          "https://doi.org/10.1007/bf00281355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0294-1449(16)30399-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084044626"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-12", 
    "datePublishedReg": "1995-12-01", 
    "description": "We consider the nonlinear Schr\u00f6dinger equation (NLS) (see below) with a general \u201cpotential\u201dF(u), for which there are in general no conservation laws. The main assumption onF(u) is a growth rateO(|u|k) for large |u|, in addition to some smoothness depending on the problem considered. A uniqueness theorem is proved with minimal smoothness assumption onF andu, which is useful in eliminating the \u201cauxiliary conditions\u201d in many cases. A new local existence theorem forHS-solutions is proved using an auxiliary space of Lebesgue type (rather than Besov type); here the main assumption is thatk\u22641+4/(m\u22122s) ifsm/2). Moreover, a general existence theorem is proved for globalHS-solutions with small initial data, under the main additional condition thatF(u)=O(|u|1+4/m) for small |u|; in particularF(u) need not be (quasi-) homogeneous or in the critical case. The results are valid for alls\u22650 ifm\u22646; there are some restrictions ifm\u22657 and ifF(u) isnot a polynomial inu and.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02787794", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136189", 
        "issn": [
          "0021-7670", 
          "1565-8538"
        ], 
        "name": "Journal d'Analyse Math\u00e9matique", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "On nonlinear Schr\u00f6dinger equations, II.HS-solutions and unconditional well-posedness", 
    "pagination": "281-306", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "628f7cd080ceab4785660a376cae74e57ee0d3157c6d1dc8ed068f06f9b6d70b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02787794"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020685524"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02787794", 
      "https://app.dimensions.ai/details/publication/pub.1020685524"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02787794"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02787794'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02787794'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02787794'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02787794'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02787794 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N605065b92e4d4671a8bc49ca7f808bd1
4 schema:citation sg:pub.10.1007/3-540-51783-9_22
5 sg:pub.10.1007/978-3-642-66451-9
6 sg:pub.10.1007/bf00281355
7 sg:pub.10.1007/bf00387713
8 sg:pub.10.1007/bf01174182
9 https://app.dimensions.ai/details/publication/pub.1039079517
10 https://doi.org/10.1016/0022-1236(91)90103-c
11 https://doi.org/10.1016/0362-546x(87)90003-4
12 https://doi.org/10.1016/0362-546x(90)90023-a
13 https://doi.org/10.1016/s0294-1449(16)30399-7
14 schema:datePublished 1995-12
15 schema:datePublishedReg 1995-12-01
16 schema:description We consider the nonlinear Schrödinger equation (NLS) (see below) with a general “potential”F(u), for which there are in general no conservation laws. The main assumption onF(u) is a growth rateO(|u|k) for large |u|, in addition to some smoothness depending on the problem considered. A uniqueness theorem is proved with minimal smoothness assumption onF andu, which is useful in eliminating the “auxiliary conditions” in many cases. A new local existence theorem forHS-solutions is proved using an auxiliary space of Lebesgue type (rather than Besov type); here the main assumption is thatk≤1+4/(m−2s) ifs<m/2,k<∞ ifs=m/2 (no assumption ifs>m/2). Moreover, a general existence theorem is proved for globalHS-solutions with small initial data, under the main additional condition thatF(u)=O(|u|1+4/m) for small |u|; in particularF(u) need not be (quasi-) homogeneous or in the critical case. The results are valid for alls≥0 ifm≤6; there are some restrictions ifm≥7 and ifF(u) isnot a polynomial inu and.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N12d8e0a7b6df44afb6d43d5b7bac57f2
21 N7656bfe81d994d9fb726256ea64c238e
22 sg:journal.1136189
23 schema:name On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness
24 schema:pagination 281-306
25 schema:productId N6db95e3a452f40b28e1a82f4c3e16cd4
26 Nbbabb462495a47c68b90e2b48aba5afb
27 Ne1384548f2c94e7794a20a45c942c28b
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020685524
29 https://doi.org/10.1007/bf02787794
30 schema:sdDatePublished 2019-04-11T13:57
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nb6390840451943358f28adf89d9632ff
33 schema:url http://link.springer.com/10.1007%2FBF02787794
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N12d8e0a7b6df44afb6d43d5b7bac57f2 schema:volumeNumber 67
38 rdf:type schema:PublicationVolume
39 N605065b92e4d4671a8bc49ca7f808bd1 rdf:first sg:person.0672636204.67
40 rdf:rest rdf:nil
41 N6db95e3a452f40b28e1a82f4c3e16cd4 schema:name readcube_id
42 schema:value 628f7cd080ceab4785660a376cae74e57ee0d3157c6d1dc8ed068f06f9b6d70b
43 rdf:type schema:PropertyValue
44 N7656bfe81d994d9fb726256ea64c238e schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 Nb6390840451943358f28adf89d9632ff schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nbbabb462495a47c68b90e2b48aba5afb schema:name dimensions_id
49 schema:value pub.1020685524
50 rdf:type schema:PropertyValue
51 Ne1384548f2c94e7794a20a45c942c28b schema:name doi
52 schema:value 10.1007/bf02787794
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136189 schema:issn 0021-7670
61 1565-8538
62 schema:name Journal d'Analyse Mathématique
63 rdf:type schema:Periodical
64 sg:person.0672636204.67 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
65 schema:familyName Kato
66 schema:givenName Tosio
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67
68 rdf:type schema:Person
69 sg:pub.10.1007/3-540-51783-9_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039537310
70 https://doi.org/10.1007/3-540-51783-9_22
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/978-3-642-66451-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039079517
73 https://doi.org/10.1007/978-3-642-66451-9
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf00281355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044297773
76 https://doi.org/10.1007/bf00281355
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf00387713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025071719
79 https://doi.org/10.1007/bf00387713
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01174182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005099440
82 https://doi.org/10.1007/bf01174182
83 rdf:type schema:CreativeWork
84 https://app.dimensions.ai/details/publication/pub.1039079517 schema:CreativeWork
85 https://doi.org/10.1016/0022-1236(91)90103-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038124043
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0362-546x(87)90003-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039787182
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0362-546x(90)90023-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027176052
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0294-1449(16)30399-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084044626
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
94 schema:name Department of Mathematics, University of California, 94720, Berkeley, CA, USA
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...