Conformal invariance in quantum mechanics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1976-08

AUTHORS

V. de Alfaro, S. Fubini, G. Furlan

ABSTRACT

The properties of a field theory in one over-all time dimension, invariant under the full conformal group, are studied in detail. A compact operator, which is not the Hamiltonian, is diagonalized and used to solve the problem of motion, providing a discrete spectrum and normalizable eigenstates. The role of the physical parameters present in the model is discussed, mainly in connection with a semi-classical approximation. More... »

PAGES

569-612

References to SciGraph publications

  • 1963-12. On the treatment of singular bethe-salpeter equations in IL NUOVO CIMENTO (1955-1965)
  • 1976-08. A new approach to conformal invariant field theories in IL NUOVO CIMENTO A (1971-1996)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02785666

    DOI

    http://dx.doi.org/10.1007/bf02785666

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038416374


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italia", 
              "id": "http://www.grid.ac/institutes/grid.470222.1", 
              "name": [
                "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Torino", 
                "Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Alfaro", 
            "givenName": "V.", 
            "id": "sg:person.011016674353.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016674353.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CERN, Geneva", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fubini", 
            "givenName": "S.", 
            "id": "sg:person.013207215753.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207215753.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CERN, Geneva", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furlan", 
            "givenName": "G.", 
            "id": "sg:person.014625714377.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02785664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035940471", 
              "https://doi.org/10.1007/bf02785664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02749828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044761429", 
              "https://doi.org/10.1007/bf02749828"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1976-08", 
        "datePublishedReg": "1976-08-01", 
        "description": "The properties of a field theory in one over-all time dimension, invariant under the full conformal group, are studied in detail. A compact operator, which is not the Hamiltonian, is diagonalized and used to solve the problem of motion, providing a discrete spectrum and normalizable eigenstates. The role of the physical parameters present in the model is discussed, mainly in connection with a semi-classical approximation.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02785666", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1336107", 
            "issn": [
              "1826-9869"
            ], 
            "name": "Il Nuovo Cimento A (1971-1996)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "full conformal group", 
          "semi-classical approximation", 
          "compact operators", 
          "conformal group", 
          "problem of motion", 
          "field theory", 
          "conformal invariance", 
          "quantum mechanics", 
          "discrete spectrum", 
          "time dimension", 
          "invariants", 
          "physical parameters", 
          "operators", 
          "approximation", 
          "mechanics", 
          "Hamiltonian", 
          "invariance", 
          "eigenstates", 
          "problem", 
          "theory", 
          "motion", 
          "model", 
          "parameters", 
          "dimensions", 
          "connection", 
          "detail", 
          "properties", 
          "spectra", 
          "group", 
          "role", 
          "normalizable eigenstates"
        ], 
        "name": "Conformal invariance in quantum mechanics", 
        "pagination": "569-612", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038416374"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02785666"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02785666", 
          "https://app.dimensions.ai/details/publication/pub.1038416374"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T17:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_131.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02785666"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02785666'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02785666'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02785666'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02785666'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      22 PREDICATES      59 URIs      49 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02785666 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N226ad35a6ec147b7a27f20e22b69c9db
    4 schema:citation sg:pub.10.1007/bf02749828
    5 sg:pub.10.1007/bf02785664
    6 schema:datePublished 1976-08
    7 schema:datePublishedReg 1976-08-01
    8 schema:description The properties of a field theory in one over-all time dimension, invariant under the full conformal group, are studied in detail. A compact operator, which is not the Hamiltonian, is diagonalized and used to solve the problem of motion, providing a discrete spectrum and normalizable eigenstates. The role of the physical parameters present in the model is discussed, mainly in connection with a semi-classical approximation.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf Nd26c927894cd4505b513d0bbf4987820
    13 Nf15287f038ac4bcf96e9c31890f7a106
    14 sg:journal.1336107
    15 schema:keywords Hamiltonian
    16 approximation
    17 compact operators
    18 conformal group
    19 conformal invariance
    20 connection
    21 detail
    22 dimensions
    23 discrete spectrum
    24 eigenstates
    25 field theory
    26 full conformal group
    27 group
    28 invariance
    29 invariants
    30 mechanics
    31 model
    32 motion
    33 normalizable eigenstates
    34 operators
    35 parameters
    36 physical parameters
    37 problem
    38 problem of motion
    39 properties
    40 quantum mechanics
    41 role
    42 semi-classical approximation
    43 spectra
    44 theory
    45 time dimension
    46 schema:name Conformal invariance in quantum mechanics
    47 schema:pagination 569-612
    48 schema:productId N519e5ac1f4b0482486bb57618bbc4cbf
    49 Nf30bec95e34b43e2ae2cc43bde45b0a4
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038416374
    51 https://doi.org/10.1007/bf02785666
    52 schema:sdDatePublished 2021-11-01T17:54
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Ncc4f222e8fd740c8b1b4d52dd31bddab
    55 schema:url https://doi.org/10.1007/bf02785666
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N226ad35a6ec147b7a27f20e22b69c9db rdf:first sg:person.011016674353.80
    60 rdf:rest N24ed941cfbfb4edf82b8465977c02344
    61 N24ed941cfbfb4edf82b8465977c02344 rdf:first sg:person.013207215753.76
    62 rdf:rest Nff948bf8af7a474e90b0307f4ad7b4a5
    63 N519e5ac1f4b0482486bb57618bbc4cbf schema:name doi
    64 schema:value 10.1007/bf02785666
    65 rdf:type schema:PropertyValue
    66 Ncc4f222e8fd740c8b1b4d52dd31bddab schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Nd26c927894cd4505b513d0bbf4987820 schema:volumeNumber 34
    69 rdf:type schema:PublicationVolume
    70 Nf15287f038ac4bcf96e9c31890f7a106 schema:issueNumber 4
    71 rdf:type schema:PublicationIssue
    72 Nf30bec95e34b43e2ae2cc43bde45b0a4 schema:name dimensions_id
    73 schema:value pub.1038416374
    74 rdf:type schema:PropertyValue
    75 Nff948bf8af7a474e90b0307f4ad7b4a5 rdf:first sg:person.014625714377.67
    76 rdf:rest rdf:nil
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1336107 schema:issn 1826-9869
    84 schema:name Il Nuovo Cimento A (1971-1996)
    85 schema:publisher Springer Nature
    86 rdf:type schema:Periodical
    87 sg:person.011016674353.80 schema:affiliation grid-institutes:grid.470222.1
    88 schema:familyName de Alfaro
    89 schema:givenName V.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016674353.80
    91 rdf:type schema:Person
    92 sg:person.013207215753.76 schema:affiliation grid-institutes:grid.9132.9
    93 schema:familyName Fubini
    94 schema:givenName S.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207215753.76
    96 rdf:type schema:Person
    97 sg:person.014625714377.67 schema:affiliation grid-institutes:grid.9132.9
    98 schema:familyName Furlan
    99 schema:givenName G.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67
    101 rdf:type schema:Person
    102 sg:pub.10.1007/bf02749828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044761429
    103 https://doi.org/10.1007/bf02749828
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf02785664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035940471
    106 https://doi.org/10.1007/bf02785664
    107 rdf:type schema:CreativeWork
    108 grid-institutes:grid.470222.1 schema:alternateName Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italia
    109 schema:name Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italia
    110 Istituto di Fisica Teorica dell’Università, Torino
    111 rdf:type schema:Organization
    112 grid-institutes:grid.9132.9 schema:alternateName CERN, Geneva
    113 schema:name CERN, Geneva
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...