Hanani triple systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-10

AUTHORS

S. A. Vanstone, D. R. Stinson, P. J. Schellenberg, A. Rosa, R. Rees, C. J. Colbourn, M. W. Carter, J. E. Carter

ABSTRACT

Hanani triple systems onv≡1 (mod 6) elements are Steiner triple systems having (v−1)/2 pairwise disjoint almost parallel classes (sets of pairwise disjoint triples that spanv−1 elements), and the remaining triples form a partial parallel class. Hanani triple systems are one natural analogue of the Kirkman triple systems onv≡3 (mod 6) elements, which form the solution of the celebrated Kirkman schoolgirl problem. We prove that a Hanani triple system exists for allv≡1 (mod 6) except forv ∈ {7, 13}. More... »

PAGES

305-319

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02784058

DOI

http://dx.doi.org/10.1007/bf02784058

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011887295


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanstone", 
        "givenName": "S. A.", 
        "id": "sg:person.010344544767.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, University of Nebraska, 68588, Lincoln, NE, USA", 
          "id": "http://www.grid.ac/institutes/grid.24434.35", 
          "name": [
            "Department of Computer Science and Engineering, University of Nebraska, 68588, Lincoln, NE, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stinson", 
        "givenName": "D. R.", 
        "id": "sg:person.014151373147.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151373147.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schellenberg", 
        "givenName": "P. J.", 
        "id": "sg:person.011251054473.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011251054473.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, McMaster University, L8S 4K1, Hamilton, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.25073.33", 
          "name": [
            "Department of Mathematics and Statistics, McMaster University, L8S 4K1, Hamilton, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosa", 
        "givenName": "A.", 
        "id": "sg:person.010225567417.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010225567417.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, Memorial University of Newfoundland, A1C 5S7, St. John\u2019s, Newfoundland, Canada", 
          "id": "http://www.grid.ac/institutes/grid.25055.37", 
          "name": [
            "Department of Mathematics and Statistics, Memorial University of Newfoundland, A1C 5S7, St. John\u2019s, Newfoundland, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rees", 
        "givenName": "R.", 
        "id": "sg:person.013106563242.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106563242.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Colbourn", 
        "givenName": "C. J.", 
        "id": "sg:person.013304430047.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013304430047.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Industrial Engineering, University of Toronto, M5S 1A4, Toronto, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Industrial Engineering, University of Toronto, M5S 1A4, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carter", 
        "givenName": "M. W.", 
        "id": "sg:person.01343101135.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343101135.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, McMaster University, L8S 4K1, Hamilton, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.25073.33", 
          "name": [
            "Department of Mathematics and Statistics, McMaster University, L8S 4K1, Hamilton, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carter", 
        "givenName": "J. E.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1993-10", 
    "datePublishedReg": "1993-10-01", 
    "description": "Hanani triple systems onv\u22611 (mod 6) elements are Steiner triple systems having (v\u22121)/2 pairwise disjoint almost parallel classes (sets of pairwise disjoint triples that spanv\u22121 elements), and the remaining triples form a partial parallel class. Hanani triple systems are one natural analogue of the Kirkman triple systems onv\u22613 (mod 6) elements, which form the solution of the celebrated Kirkman schoolgirl problem. We prove that a Hanani triple system exists for allv\u22611 (mod 6) except forv \u2208 {7, 13}.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02784058", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136632", 
        "issn": [
          "0021-2172", 
          "1565-8511"
        ], 
        "name": "Israel Journal of Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "keywords": [
      "Steiner triple systems", 
      "system", 
      "elements", 
      "Kirkman triple systems", 
      "solution", 
      "natural analogues", 
      "Kirkman\u2019s Schoolgirl Problem", 
      "triple systems", 
      "problem", 
      "partial parallel classes", 
      "forv", 
      "class", 
      "parallel classes", 
      "analogues", 
      "triples", 
      "pairwise"
    ], 
    "name": "Hanani triple systems", 
    "pagination": "305-319", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011887295"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02784058"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02784058", 
      "https://app.dimensions.ai/details/publication/pub.1011887295"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_260.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02784058"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02784058'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02784058'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02784058'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02784058'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      20 PREDICATES      41 URIs      33 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02784058 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ncd89947b2d024f64814fe31fd630fe87
4 schema:datePublished 1993-10
5 schema:datePublishedReg 1993-10-01
6 schema:description Hanani triple systems onv≡1 (mod 6) elements are Steiner triple systems having (v−1)/2 pairwise disjoint almost parallel classes (sets of pairwise disjoint triples that spanv−1 elements), and the remaining triples form a partial parallel class. Hanani triple systems are one natural analogue of the Kirkman triple systems onv≡3 (mod 6) elements, which form the solution of the celebrated Kirkman schoolgirl problem. We prove that a Hanani triple system exists for allv≡1 (mod 6) except forv ∈ {7, 13}.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf Nb7308fe91f84409eb54de2f6ac0ca5dc
10 Nc938f979d1204cc290287b27cc48ad71
11 sg:journal.1136632
12 schema:keywords Kirkman triple systems
13 Kirkman’s Schoolgirl Problem
14 Steiner triple systems
15 analogues
16 class
17 elements
18 forv
19 natural analogues
20 pairwise
21 parallel classes
22 partial parallel classes
23 problem
24 solution
25 system
26 triple systems
27 triples
28 schema:name Hanani triple systems
29 schema:pagination 305-319
30 schema:productId N3f796aa090c8486cb7aa7c3710016cd8
31 Nd5e5359a4f4a4ca49414bff74f21f58d
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011887295
33 https://doi.org/10.1007/bf02784058
34 schema:sdDatePublished 2022-09-02T15:47
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nc056ac56a6d84a41b2d3c5915029928c
37 schema:url https://doi.org/10.1007/bf02784058
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N3f796aa090c8486cb7aa7c3710016cd8 schema:name dimensions_id
42 schema:value pub.1011887295
43 rdf:type schema:PropertyValue
44 N524f3f20b30540cfa264d79dba76553b rdf:first sg:person.013106563242.56
45 rdf:rest N6673e5fe6f9a4e77a82bd60eac8cb18d
46 N608da7b4fb564dae9c5695f00cf08850 rdf:first sg:person.014151373147.58
47 rdf:rest N8c9fe6d3e7704212a90134bb714f93d4
48 N61466658c7e245f0ab11f5d0cc784f5b rdf:first sg:person.010225567417.83
49 rdf:rest N524f3f20b30540cfa264d79dba76553b
50 N6673e5fe6f9a4e77a82bd60eac8cb18d rdf:first sg:person.013304430047.53
51 rdf:rest Nd1b53bceb824454c9de5e591ce6e2ac1
52 N8c9fe6d3e7704212a90134bb714f93d4 rdf:first sg:person.011251054473.16
53 rdf:rest N61466658c7e245f0ab11f5d0cc784f5b
54 N927a88f235754d3a9bb8ad1b29228201 schema:affiliation grid-institutes:grid.25073.33
55 schema:familyName Carter
56 schema:givenName J. E.
57 rdf:type schema:Person
58 N9da2072cbc8648ff97c2c99797d3dc02 rdf:first N927a88f235754d3a9bb8ad1b29228201
59 rdf:rest rdf:nil
60 Nb7308fe91f84409eb54de2f6ac0ca5dc schema:issueNumber 3
61 rdf:type schema:PublicationIssue
62 Nc056ac56a6d84a41b2d3c5915029928c schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nc938f979d1204cc290287b27cc48ad71 schema:volumeNumber 83
65 rdf:type schema:PublicationVolume
66 Ncd89947b2d024f64814fe31fd630fe87 rdf:first sg:person.010344544767.07
67 rdf:rest N608da7b4fb564dae9c5695f00cf08850
68 Nd1b53bceb824454c9de5e591ce6e2ac1 rdf:first sg:person.01343101135.66
69 rdf:rest N9da2072cbc8648ff97c2c99797d3dc02
70 Nd5e5359a4f4a4ca49414bff74f21f58d schema:name doi
71 schema:value 10.1007/bf02784058
72 rdf:type schema:PropertyValue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1136632 schema:issn 0021-2172
80 1565-8511
81 schema:name Israel Journal of Mathematics
82 schema:publisher Springer Nature
83 rdf:type schema:Periodical
84 sg:person.010225567417.83 schema:affiliation grid-institutes:grid.25073.33
85 schema:familyName Rosa
86 schema:givenName A.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010225567417.83
88 rdf:type schema:Person
89 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
90 schema:familyName Vanstone
91 schema:givenName S. A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
93 rdf:type schema:Person
94 sg:person.011251054473.16 schema:affiliation grid-institutes:grid.46078.3d
95 schema:familyName Schellenberg
96 schema:givenName P. J.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011251054473.16
98 rdf:type schema:Person
99 sg:person.013106563242.56 schema:affiliation grid-institutes:grid.25055.37
100 schema:familyName Rees
101 schema:givenName R.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106563242.56
103 rdf:type schema:Person
104 sg:person.013304430047.53 schema:affiliation grid-institutes:grid.46078.3d
105 schema:familyName Colbourn
106 schema:givenName C. J.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013304430047.53
108 rdf:type schema:Person
109 sg:person.01343101135.66 schema:affiliation grid-institutes:grid.17063.33
110 schema:familyName Carter
111 schema:givenName M. W.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343101135.66
113 rdf:type schema:Person
114 sg:person.014151373147.58 schema:affiliation grid-institutes:grid.24434.35
115 schema:familyName Stinson
116 schema:givenName D. R.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151373147.58
118 rdf:type schema:Person
119 grid-institutes:grid.17063.33 schema:alternateName Department of Industrial Engineering, University of Toronto, M5S 1A4, Toronto, Ontario, Canada
120 schema:name Department of Industrial Engineering, University of Toronto, M5S 1A4, Toronto, Ontario, Canada
121 rdf:type schema:Organization
122 grid-institutes:grid.24434.35 schema:alternateName Department of Computer Science and Engineering, University of Nebraska, 68588, Lincoln, NE, USA
123 schema:name Department of Computer Science and Engineering, University of Nebraska, 68588, Lincoln, NE, USA
124 rdf:type schema:Organization
125 grid-institutes:grid.25055.37 schema:alternateName Department of Mathematics and Statistics, Memorial University of Newfoundland, A1C 5S7, St. John’s, Newfoundland, Canada
126 schema:name Department of Mathematics and Statistics, Memorial University of Newfoundland, A1C 5S7, St. John’s, Newfoundland, Canada
127 rdf:type schema:Organization
128 grid-institutes:grid.25073.33 schema:alternateName Department of Mathematics and Statistics, McMaster University, L8S 4K1, Hamilton, Ontario, Canada
129 schema:name Department of Mathematics and Statistics, McMaster University, L8S 4K1, Hamilton, Ontario, Canada
130 rdf:type schema:Organization
131 grid-institutes:grid.46078.3d schema:alternateName Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
132 schema:name Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...