On quantum field theory. II: Non-perturbative equations and methods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1954-05

AUTHORS

E. R. Caianiello

ABSTRACT

The evaluation of an element of theU-matrix between arbitrary initial and final states is reduced to that of a kernel, whose form depends only upon the number of particles involved and is given explicity as a perturbative expansion. Kernels are shown to satisfy systems of «branching equations», which hold independently of perturbation methods and can be taken as the axiomatic foundation of the theory, Lorentz covariance being manifest. Complete systems of such equations are given for the kernels and their derivatives with respect to the interaction strength λ: all other conceivable equations among kernels are necessarily deducible from them. All kernels corresponding to processes involving real bosons can be obtained, with simple integrations, from the kernels for purely fermionic processes; the branching equations for these are also explicity given and suffice to define the theory. A kernel, with its first and second λ-derivatives, satisfies a single integral relation. A variety of approximation methods are immediately deducible from the branching equations; they, while extending and generalizing the known ones, always permit, at least in principle, tests of convergence. Questions of renormalization, existence of solutions, etc., will be studied in the sequel to this paper. More... »

PAGES

492-529

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02781043

DOI

http://dx.doi.org/10.1007/bf02781043

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006501346


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Roma I", 
          "id": "https://www.grid.ac/institutes/grid.470218.8", 
          "name": [
            "Istituto di Fisica dell\u2019Universit\u00e0, Roma", 
            "Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caianiello", 
        "givenName": "E. R.", 
        "id": "sg:person.010271572215.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010271572215.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02781659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005579666", 
          "https://doi.org/10.1007/bf02781659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02781659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005579666", 
          "https://doi.org/10.1007/bf02781659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02773048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033733862", 
          "https://doi.org/10.1007/bf02773048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02773103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041735217", 
          "https://doi.org/10.1007/bf02773103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.76.749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060455670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.76.749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060455670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.78.382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.78.382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.80.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.80.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.84.395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.84.395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.90.690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.90.690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460714"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1954-05", 
    "datePublishedReg": "1954-05-01", 
    "description": "The evaluation of an element of theU-matrix between arbitrary initial and final states is reduced to that of a kernel, whose form depends only upon the number of particles involved and is given explicity as a perturbative expansion. Kernels are shown to satisfy systems of \u00abbranching equations\u00bb, which hold independently of perturbation methods and can be taken as the axiomatic foundation of the theory, Lorentz covariance being manifest. Complete systems of such equations are given for the kernels and their derivatives with respect to the interaction strength \u03bb: all other conceivable equations among kernels are necessarily deducible from them. All kernels corresponding to processes involving real bosons can be obtained, with simple integrations, from the kernels for purely fermionic processes; the branching equations for these are also explicity given and suffice to define the theory. A kernel, with its first and second \u03bb-derivatives, satisfies a single integral relation. A variety of approximation methods are immediately deducible from the branching equations; they, while extending and generalizing the known ones, always permit, at least in principle, tests of convergence. Questions of renormalization, existence of solutions, etc., will be studied in the sequel to this paper.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02781043", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336105", 
        "issn": [
          "1827-6121"
        ], 
        "name": "Il Nuovo Cimento (1943-1954)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "On quantum field theory. II: Non-perturbative equations and methods", 
    "pagination": "492-529", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ef78bacd81ba6c030a418729a9afa403caf0423267d24908c1f316de61b133b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02781043"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006501346"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02781043", 
      "https://app.dimensions.ai/details/publication/pub.1006501346"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46757_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02781043"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02781043'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02781043'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02781043'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02781043'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02781043 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N20878801ad584f86a2a115c2c57c4925
4 schema:citation sg:pub.10.1007/bf02773048
5 sg:pub.10.1007/bf02773103
6 sg:pub.10.1007/bf02781659
7 https://doi.org/10.1103/physrev.76.749
8 https://doi.org/10.1103/physrev.78.382
9 https://doi.org/10.1103/physrev.80.440
10 https://doi.org/10.1103/physrev.84.395
11 https://doi.org/10.1103/physrev.90.690
12 schema:datePublished 1954-05
13 schema:datePublishedReg 1954-05-01
14 schema:description The evaluation of an element of theU-matrix between arbitrary initial and final states is reduced to that of a kernel, whose form depends only upon the number of particles involved and is given explicity as a perturbative expansion. Kernels are shown to satisfy systems of «branching equations», which hold independently of perturbation methods and can be taken as the axiomatic foundation of the theory, Lorentz covariance being manifest. Complete systems of such equations are given for the kernels and their derivatives with respect to the interaction strength λ: all other conceivable equations among kernels are necessarily deducible from them. All kernels corresponding to processes involving real bosons can be obtained, with simple integrations, from the kernels for purely fermionic processes; the branching equations for these are also explicity given and suffice to define the theory. A kernel, with its first and second λ-derivatives, satisfies a single integral relation. A variety of approximation methods are immediately deducible from the branching equations; they, while extending and generalizing the known ones, always permit, at least in principle, tests of convergence. Questions of renormalization, existence of solutions, etc., will be studied in the sequel to this paper.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N1e6aeba006a344048298aa8df0a51de4
19 Nbb3f39c9c3d34f9f869c180c6808362d
20 sg:journal.1336105
21 schema:name On quantum field theory. II: Non-perturbative equations and methods
22 schema:pagination 492-529
23 schema:productId N50fd031b3a944a18891075a4ce55cfbd
24 N69a823f21435405e99dc8f3e08bbd9e6
25 Ne6d1d3684b444e21876b59190ce078ca
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006501346
27 https://doi.org/10.1007/bf02781043
28 schema:sdDatePublished 2019-04-11T13:31
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nbeb5000594c24f928b2b53d0fcbabaf2
31 schema:url http://link.springer.com/10.1007%2FBF02781043
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N1e6aeba006a344048298aa8df0a51de4 schema:issueNumber 5
36 rdf:type schema:PublicationIssue
37 N20878801ad584f86a2a115c2c57c4925 rdf:first sg:person.010271572215.23
38 rdf:rest rdf:nil
39 N50fd031b3a944a18891075a4ce55cfbd schema:name dimensions_id
40 schema:value pub.1006501346
41 rdf:type schema:PropertyValue
42 N69a823f21435405e99dc8f3e08bbd9e6 schema:name readcube_id
43 schema:value 1ef78bacd81ba6c030a418729a9afa403caf0423267d24908c1f316de61b133b
44 rdf:type schema:PropertyValue
45 Nbb3f39c9c3d34f9f869c180c6808362d schema:volumeNumber 11
46 rdf:type schema:PublicationVolume
47 Nbeb5000594c24f928b2b53d0fcbabaf2 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Ne6d1d3684b444e21876b59190ce078ca schema:name doi
50 schema:value 10.1007/bf02781043
51 rdf:type schema:PropertyValue
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
56 schema:name Applied Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1336105 schema:issn 1827-6121
59 schema:name Il Nuovo Cimento (1943-1954)
60 rdf:type schema:Periodical
61 sg:person.010271572215.23 schema:affiliation https://www.grid.ac/institutes/grid.470218.8
62 schema:familyName Caianiello
63 schema:givenName E. R.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010271572215.23
65 rdf:type schema:Person
66 sg:pub.10.1007/bf02773048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033733862
67 https://doi.org/10.1007/bf02773048
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf02773103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041735217
70 https://doi.org/10.1007/bf02773103
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf02781659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005579666
73 https://doi.org/10.1007/bf02781659
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1103/physrev.76.749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060455670
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1103/physrev.78.382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060456156
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1103/physrev.80.440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060456990
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1103/physrev.84.395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458537
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1103/physrev.90.690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460714
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.470218.8 schema:alternateName INFN Sezione di Roma I
86 schema:name Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italia
87 Istituto di Fisica dell’Università, Roma
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...