Scratch- and mar-resistant refinish two-pack clear coats — linear versus branched acrylics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12

AUTHORS

J Huybrechts, A Vaes, K Dusek, M Duskova-Smrckova, R Barsotti

ABSTRACT

The new generation clear coats introduced in the automotive industry have improved scratch and mar resistance. It is believed that those properties are related to the introduction of new binder technologies leading to higher film cross-link densities. This was relatively easy to accomplish in the automotive industry because baking temperatures are well above the glass-transition temperature (Tg) of the final clear coat film. In car repair coatings, the cross-linking takes place under conditions where the intermediate and/or final film Tg values are above the curing temperature. Such formulations result in vitrification during the drying process, a transition during which chemical cure and solvent release are slowed down substantially. The chemical cure can be improved through more reactive and/or higher functional binders, but this shifts the gel point to shorter times in the drying cycle which may lead to more solvent entrapment, resulting in low film hardnesses and paint defects. This paper describes the overall properties of 2K-refinish clear coats based on linear versus branched, random and graft acrylic polyols. The authors will try to correlate overall properties with theoretical predictions and practical results. More... »

PAGES

275-283

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02765579

DOI

http://dx.doi.org/10.1007/bf02765579

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019548445


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "DuPont Performance Coatings, A Spinoystraat 6, 2800, Mechelen, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huybrechts", 
        "givenName": "J", 
        "id": "sg:person.07532363137.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532363137.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "DuPont Performance Coatings, A Spinoystraat 6, 2800, Mechelen, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vaes", 
        "givenName": "A", 
        "id": "sg:person.014770047607.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014770047607.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Macromolecular Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.424999.b", 
          "name": [
            "Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dusek", 
        "givenName": "K", 
        "id": "sg:person.01151570140.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151570140.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Macromolecular Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.424999.b", 
          "name": [
            "Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duskova-Smrckova", 
        "givenName": "M", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Marshall Laboratory, DuPont Performance Coatings, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barsotti", 
        "givenName": "R", 
        "id": "sg:person.012050261007.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012050261007.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/masy.200350822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009245849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6700(00)00028-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010177649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02698027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013952765", 
          "https://doi.org/10.1007/bf02698027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02698027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013952765", 
          "https://doi.org/10.1007/bf02698027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02698026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024061570", 
          "https://doi.org/10.1007/bf02698026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02698026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024061570", 
          "https://doi.org/10.1007/bf02698026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02699642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026562832", 
          "https://doi.org/10.1007/bf02699642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02699642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026562832", 
          "https://doi.org/10.1007/bf02699642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0033-0655(93)80020-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047173959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-4052(199910)30:10<617::aid-mawe617>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053215506"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "The new generation clear coats introduced in the automotive industry have improved scratch and mar resistance. It is believed that those properties are related to the introduction of new binder technologies leading to higher film cross-link densities. This was relatively easy to accomplish in the automotive industry because baking temperatures are well above the glass-transition temperature (Tg) of the final clear coat film. In car repair coatings, the cross-linking takes place under conditions where the intermediate and/or final film Tg values are above the curing temperature. Such formulations result in vitrification during the drying process, a transition during which chemical cure and solvent release are slowed down substantially. The chemical cure can be improved through more reactive and/or higher functional binders, but this shifts the gel point to shorter times in the drying cycle which may lead to more solvent entrapment, resulting in low film hardnesses and paint defects. This paper describes the overall properties of 2K-refinish clear coats based on linear versus branched, random and graft acrylic polyols. The authors will try to correlate overall properties with theoretical predictions and practical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02765579", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320084", 
        "issn": [
          "1945-9645", 
          "2168-8028"
        ], 
        "name": "Journal of Coatings Technology and Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "89"
      }
    ], 
    "name": "Scratch- and mar-resistant refinish two-pack clear coats \u2014 linear versus branched acrylics", 
    "pagination": "275-283", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d24201c2c9654e99870fbed54cab1993e274a8da7a3633cd9001b1e0504ff3f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02765579"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019548445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02765579", 
      "https://app.dimensions.ai/details/publication/pub.1019548445"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02765579"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02765579'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02765579'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02765579'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02765579'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02765579 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author N47c8062cf13a4edf89b1c5f33fc6e1fb
4 schema:citation sg:pub.10.1007/bf02698026
5 sg:pub.10.1007/bf02698027
6 sg:pub.10.1007/bf02699642
7 https://doi.org/10.1002/(sici)1521-4052(199910)30:10<617::aid-mawe617>3.0.co;2-j
8 https://doi.org/10.1002/masy.200350822
9 https://doi.org/10.1016/0033-0655(93)80020-b
10 https://doi.org/10.1016/s0079-6700(00)00028-9
11 schema:datePublished 2006-12
12 schema:datePublishedReg 2006-12-01
13 schema:description The new generation clear coats introduced in the automotive industry have improved scratch and mar resistance. It is believed that those properties are related to the introduction of new binder technologies leading to higher film cross-link densities. This was relatively easy to accomplish in the automotive industry because baking temperatures are well above the glass-transition temperature (Tg) of the final clear coat film. In car repair coatings, the cross-linking takes place under conditions where the intermediate and/or final film Tg values are above the curing temperature. Such formulations result in vitrification during the drying process, a transition during which chemical cure and solvent release are slowed down substantially. The chemical cure can be improved through more reactive and/or higher functional binders, but this shifts the gel point to shorter times in the drying cycle which may lead to more solvent entrapment, resulting in low film hardnesses and paint defects. This paper describes the overall properties of 2K-refinish clear coats based on linear versus branched, random and graft acrylic polyols. The authors will try to correlate overall properties with theoretical predictions and practical results.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nb9bfe37c2df44d989f3603e4c303c713
18 Nfe17dea7f14f4eaa9b8c0ff508efd229
19 sg:journal.1320084
20 schema:name Scratch- and mar-resistant refinish two-pack clear coats — linear versus branched acrylics
21 schema:pagination 275-283
22 schema:productId N165fc3f9cf754f24998b3fa7cdbfbd44
23 N9a5991d5f6dd40129447994af264bf42
24 Nb177f742ee664daca5ff912e3eae6056
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019548445
26 https://doi.org/10.1007/bf02765579
27 schema:sdDatePublished 2019-04-10T20:08
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N0bbca948446648c0b7e3c4c398b83331
30 schema:url http://link.springer.com/10.1007/BF02765579
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N0bbca948446648c0b7e3c4c398b83331 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N0d0614fe55d046c78670fb42c167bc88 rdf:first sg:person.01151570140.64
37 rdf:rest N75900e4aa02049e1b703ab26cdcca3eb
38 N165fc3f9cf754f24998b3fa7cdbfbd44 schema:name readcube_id
39 schema:value 5d24201c2c9654e99870fbed54cab1993e274a8da7a3633cd9001b1e0504ff3f
40 rdf:type schema:PropertyValue
41 N1fa474b78e4f4d05b54d53d7cdd0f8c2 schema:name Marshall Laboratory, DuPont Performance Coatings, Philadelphia, PA, USA
42 rdf:type schema:Organization
43 N2b45f4d622724f91aa98b3f4350fe4b3 rdf:first sg:person.012050261007.55
44 rdf:rest rdf:nil
45 N2ee07dc8090c4e8a93b4305417cdff36 schema:name DuPont Performance Coatings, A Spinoystraat 6, 2800, Mechelen, Belgium
46 rdf:type schema:Organization
47 N4006aaeba8f440828632ac7e62b8681b schema:name DuPont Performance Coatings, A Spinoystraat 6, 2800, Mechelen, Belgium
48 rdf:type schema:Organization
49 N47c8062cf13a4edf89b1c5f33fc6e1fb rdf:first sg:person.07532363137.60
50 rdf:rest Nf8a9575ece2746909c2c7632521af517
51 N75900e4aa02049e1b703ab26cdcca3eb rdf:first Nd97bdd52b3a84af78e3a514665936b49
52 rdf:rest N2b45f4d622724f91aa98b3f4350fe4b3
53 N9a5991d5f6dd40129447994af264bf42 schema:name dimensions_id
54 schema:value pub.1019548445
55 rdf:type schema:PropertyValue
56 Nb177f742ee664daca5ff912e3eae6056 schema:name doi
57 schema:value 10.1007/bf02765579
58 rdf:type schema:PropertyValue
59 Nb9bfe37c2df44d989f3603e4c303c713 schema:issueNumber 4
60 rdf:type schema:PublicationIssue
61 Nd97bdd52b3a84af78e3a514665936b49 schema:affiliation https://www.grid.ac/institutes/grid.424999.b
62 schema:familyName Duskova-Smrckova
63 schema:givenName M
64 rdf:type schema:Person
65 Nf8a9575ece2746909c2c7632521af517 rdf:first sg:person.014770047607.94
66 rdf:rest N0d0614fe55d046c78670fb42c167bc88
67 Nfe17dea7f14f4eaa9b8c0ff508efd229 schema:volumeNumber 89
68 rdf:type schema:PublicationVolume
69 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
70 schema:name Chemical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
73 schema:name Macromolecular and Materials Chemistry
74 rdf:type schema:DefinedTerm
75 sg:journal.1320084 schema:issn 1945-9645
76 2168-8028
77 schema:name Journal of Coatings Technology and Research
78 rdf:type schema:Periodical
79 sg:person.01151570140.64 schema:affiliation https://www.grid.ac/institutes/grid.424999.b
80 schema:familyName Dusek
81 schema:givenName K
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151570140.64
83 rdf:type schema:Person
84 sg:person.012050261007.55 schema:affiliation N1fa474b78e4f4d05b54d53d7cdd0f8c2
85 schema:familyName Barsotti
86 schema:givenName R
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012050261007.55
88 rdf:type schema:Person
89 sg:person.014770047607.94 schema:affiliation N2ee07dc8090c4e8a93b4305417cdff36
90 schema:familyName Vaes
91 schema:givenName A
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014770047607.94
93 rdf:type schema:Person
94 sg:person.07532363137.60 schema:affiliation N4006aaeba8f440828632ac7e62b8681b
95 schema:familyName Huybrechts
96 schema:givenName J
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532363137.60
98 rdf:type schema:Person
99 sg:pub.10.1007/bf02698026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024061570
100 https://doi.org/10.1007/bf02698026
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02698027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013952765
103 https://doi.org/10.1007/bf02698027
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02699642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026562832
106 https://doi.org/10.1007/bf02699642
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/(sici)1521-4052(199910)30:10<617::aid-mawe617>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1053215506
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/masy.200350822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009245849
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0033-0655(93)80020-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1047173959
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0079-6700(00)00028-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010177649
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.424999.b schema:alternateName Institute of Macromolecular Chemistry
117 schema:name Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague, Czech Republic
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...