Phase Transitions of Single Semistiff Polymer Chains View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-12

AUTHORS

Ugo Bastolla, Peter Grassberger

ABSTRACT

We study numerically a lattice model of semiflexible homopolymers with nearest neighbor (nn) attraction and energetic preference for straight joints between bonded monomers. For this we use a new Monte Carlo algorithm, the “prunedenriched Rosenbluth Method” (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low-T states. This allows us to study in detail the phase diagram as a function of nn attractionε and stiffnessx. It shows aθ-collapse line with a transition from open coils (smallε) to molten compact globules (largeε) and a freezing transition toward a state with orientational global order (large stiffnessx). Qualitatively this is similar to a recently studied mean-field theory [S. Doniach, T. Garel, and H. Orland (1996),J. Chem. Phys. 105(4), 1601], but there are important differences in details. In contrast to the mean-field theory and to naive expectations, theθ-temperatureincreases with stiffnessx. The freezing temperature increases even faster, and reaches theθ-line at a finite value ofx. For even stiffer chains, the freezing transition takes place directly, without the formation of an intermediate globular state. Although being in conflict with mean-field theory, the latter had been conjectured already by Doniachet al. on the basis of heuristic arguments and of low-statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding. More... »

PAGES

1061-1078

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02764222

DOI

http://dx.doi.org/10.1007/bf02764222

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042786129


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "HLRZ, Forschungszentrum J\u00fclicn, D-52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastolla", 
        "givenName": "Ugo", 
        "id": "sg:person.01144444727.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144444727.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "HLRZ, Forschungszentrum J\u00fclicn, D-52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grassberger", 
        "givenName": "Peter", 
        "id": "sg:person.0704113004.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.83.19.7267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037160597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.472031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039816910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1956.0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042453808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02178552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050965010", 
          "https://doi.org/10.1007/bf02178552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02178552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050965010", 
          "https://doi.org/10.1007/bf02178552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00095a009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056177175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00142a071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056179833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp2:1997134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056975446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1730021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057796441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1741967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057804419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.445505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058023525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.450439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058028457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.450930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058028948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.453152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058031168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.469126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058047115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/21/1/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059069469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/30/5/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059075808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721405"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-12", 
    "datePublishedReg": "1997-12-01", 
    "description": "We study numerically a lattice model of semiflexible homopolymers with nearest neighbor (nn) attraction and energetic preference for straight joints between bonded monomers. For this we use a new Monte Carlo algorithm, the \u201cprunedenriched Rosenbluth Method\u201d (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low-T states. This allows us to study in detail the phase diagram as a function of nn attraction\u03b5 and stiffnessx. It shows a\u03b8-collapse line with a transition from open coils (small\u03b5) to molten compact globules (large\u03b5) and a freezing transition toward a state with orientational global order (large stiffnessx). Qualitatively this is similar to a recently studied mean-field theory [S. Doniach, T. Garel, and H. Orland (1996),J. Chem. Phys. 105(4), 1601], but there are important differences in details. In contrast to the mean-field theory and to naive expectations, the\u03b8-temperatureincreases with stiffnessx. The freezing temperature increases even faster, and reaches the\u03b8-line at a finite value ofx. For even stiffer chains, the freezing transition takes place directly, without the formation of an intermediate globular state. Although being in conflict with mean-field theory, the latter had been conjectured already by Doniachet al. on the basis of heuristic arguments and of low-statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02764222", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "89"
      }
    ], 
    "name": "Phase Transitions of Single Semistiff Polymer Chains", 
    "pagination": "1061-1078", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cbcef493b3e21436989e03a264b7f60191ac59932b3e7239ae9490ecab914e35"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02764222"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042786129"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02764222", 
      "https://app.dimensions.ai/details/publication/pub.1042786129"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02764222"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02764222'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02764222'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02764222'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02764222'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02764222 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N9e0c09490f4342c3b8d7fff8a72e55f4
4 schema:citation sg:pub.10.1007/bf02178552
5 https://doi.org/10.1021/ma00095a009
6 https://doi.org/10.1021/ma00142a071
7 https://doi.org/10.1051/jp2:1997134
8 https://doi.org/10.1063/1.1730021
9 https://doi.org/10.1063/1.1741967
10 https://doi.org/10.1063/1.445505
11 https://doi.org/10.1063/1.450439
12 https://doi.org/10.1063/1.450930
13 https://doi.org/10.1063/1.453152
14 https://doi.org/10.1063/1.469126
15 https://doi.org/10.1063/1.472031
16 https://doi.org/10.1073/pnas.83.19.7267
17 https://doi.org/10.1088/0305-4470/21/1/020
18 https://doi.org/10.1088/0305-4470/30/5/014
19 https://doi.org/10.1098/rspa.1956.0015
20 https://doi.org/10.1103/physreve.56.3682
21 schema:datePublished 1997-12
22 schema:datePublishedReg 1997-12-01
23 schema:description We study numerically a lattice model of semiflexible homopolymers with nearest neighbor (nn) attraction and energetic preference for straight joints between bonded monomers. For this we use a new Monte Carlo algorithm, the “prunedenriched Rosenbluth Method” (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low-T states. This allows us to study in detail the phase diagram as a function of nn attractionε and stiffnessx. It shows aθ-collapse line with a transition from open coils (smallε) to molten compact globules (largeε) and a freezing transition toward a state with orientational global order (large stiffnessx). Qualitatively this is similar to a recently studied mean-field theory [S. Doniach, T. Garel, and H. Orland (1996),J. Chem. Phys. 105(4), 1601], but there are important differences in details. In contrast to the mean-field theory and to naive expectations, theθ-temperatureincreases with stiffnessx. The freezing temperature increases even faster, and reaches theθ-line at a finite value ofx. For even stiffer chains, the freezing transition takes place directly, without the formation of an intermediate globular state. Although being in conflict with mean-field theory, the latter had been conjectured already by Doniachet al. on the basis of heuristic arguments and of low-statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N65c296f0712746a18885ccbb8b0143d7
28 N670974ba2cda455f991d5f13d5cd3b38
29 sg:journal.1040979
30 schema:name Phase Transitions of Single Semistiff Polymer Chains
31 schema:pagination 1061-1078
32 schema:productId N16b01932a7ca421bb0fe8ad4037fcf54
33 N56f51bb7a9634db988c51c3ef508e7c6
34 N858841913cbb463d9484af34264c8543
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042786129
36 https://doi.org/10.1007/bf02764222
37 schema:sdDatePublished 2019-04-10T14:59
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N560efc9a0c8049878702297a2287165d
40 schema:url http://link.springer.com/10.1007%2FBF02764222
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N06f3f86722ba42b590e98f200bf2a112 schema:name HLRZ, Forschungszentrum Jülicn, D-52425, Jülich, Germany
45 rdf:type schema:Organization
46 N16b01932a7ca421bb0fe8ad4037fcf54 schema:name readcube_id
47 schema:value cbcef493b3e21436989e03a264b7f60191ac59932b3e7239ae9490ecab914e35
48 rdf:type schema:PropertyValue
49 N560efc9a0c8049878702297a2287165d schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N56f51bb7a9634db988c51c3ef508e7c6 schema:name doi
52 schema:value 10.1007/bf02764222
53 rdf:type schema:PropertyValue
54 N65c296f0712746a18885ccbb8b0143d7 schema:issueNumber 5-6
55 rdf:type schema:PublicationIssue
56 N670974ba2cda455f991d5f13d5cd3b38 schema:volumeNumber 89
57 rdf:type schema:PublicationVolume
58 N858841913cbb463d9484af34264c8543 schema:name dimensions_id
59 schema:value pub.1042786129
60 rdf:type schema:PropertyValue
61 N9e0c09490f4342c3b8d7fff8a72e55f4 rdf:first sg:person.01144444727.87
62 rdf:rest Nc2447f85567f45078210d2f532b5ee49
63 Na3c2000f86d24dad8c25e7e6a3078b00 schema:name HLRZ, Forschungszentrum Jülicn, D-52425, Jülich, Germany
64 rdf:type schema:Organization
65 Nc2447f85567f45078210d2f532b5ee49 rdf:first sg:person.0704113004.84
66 rdf:rest rdf:nil
67 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
68 schema:name Physical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
71 schema:name Other Physical Sciences
72 rdf:type schema:DefinedTerm
73 sg:journal.1040979 schema:issn 0022-4715
74 1572-9613
75 schema:name Journal of Statistical Physics
76 rdf:type schema:Periodical
77 sg:person.01144444727.87 schema:affiliation Na3c2000f86d24dad8c25e7e6a3078b00
78 schema:familyName Bastolla
79 schema:givenName Ugo
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144444727.87
81 rdf:type schema:Person
82 sg:person.0704113004.84 schema:affiliation N06f3f86722ba42b590e98f200bf2a112
83 schema:familyName Grassberger
84 schema:givenName Peter
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84
86 rdf:type schema:Person
87 sg:pub.10.1007/bf02178552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050965010
88 https://doi.org/10.1007/bf02178552
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1021/ma00095a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056177175
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1021/ma00142a071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056179833
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1051/jp2:1997134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056975446
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.1730021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057796441
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.1741967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057804419
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.445505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058023525
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1063/1.450439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058028457
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.450930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058028948
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1063/1.453152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058031168
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1063/1.469126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058047115
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1063/1.472031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039816910
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1073/pnas.83.19.7267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037160597
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1088/0305-4470/21/1/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059069469
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0305-4470/30/5/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059075808
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1098/rspa.1956.0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042453808
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physreve.56.3682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060721405
121 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...