Analytic invariants and the Schwarz-Pick inequality View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-09

AUTHORS

Lawrence A. Harris

ABSTRACT

We find numerical analytic invariants distinguishing between the infinite dimensional analogues of the classical Cartan domains of different type. Further, we define an invariant Hermitian metric on the classical bounded symmetric domains and certain infinite dimensional analogues and show that of all such metrics this is the only one (up to a constant multiple) which yields the best constant in the Schwarz-Pick inequality. More... »

PAGES

177-197

References to SciGraph publications

Journal

TITLE

Israel Journal of Mathematics

ISSUE

3

VOLUME

34

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02760882

DOI

http://dx.doi.org/10.1007/bf02760882

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033319381


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Mathematics, University of Kentucky, 40506, Lexington, Kentucky, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harris", 
        "givenName": "Lawrence A.", 
        "id": "sg:person.01035375464.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035375464.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1974-0358371-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021587423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1966-0199434-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024408464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-0208(08)70766-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041464407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02940719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044840156", 
          "https://doi.org/10.1007/bf02940719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0060041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047361091", 
          "https://doi.org/10.1007/bfb0060041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0060041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047361091", 
          "https://doi.org/10.1007/bfb0060041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927877708822210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048425815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01360772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048669979", 
          "https://doi.org/10.1007/bf01360772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01360772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048669979", 
          "https://doi.org/10.1007/bf01360772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00253936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050553651", 
          "https://doi.org/10.1007/bf00253936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00253936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050553651", 
          "https://doi.org/10.1007/bf00253936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1997263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069689853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2035091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069706502"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-09", 
    "datePublishedReg": "1979-09-01", 
    "description": "We find numerical analytic invariants distinguishing between the infinite dimensional analogues of the classical Cartan domains of different type. Further, we define an invariant Hermitian metric on the classical bounded symmetric domains and certain infinite dimensional analogues and show that of all such metrics this is the only one (up to a constant multiple) which yields the best constant in the Schwarz-Pick inequality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02760882", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136632", 
        "issn": [
          "0021-2172", 
          "1565-8511"
        ], 
        "name": "Israel Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Analytic invariants and the Schwarz-Pick inequality", 
    "pagination": "177-197", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9eba591961fa022360543635b6d044df214a597ef1a6dc8e18dd749841879927"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02760882"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033319381"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02760882", 
      "https://app.dimensions.ai/details/publication/pub.1033319381"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000489.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02760882"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02760882'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02760882'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02760882'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02760882'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02760882 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N784cdb9cbc2f4efcb66ccc2f328baf60
4 schema:citation sg:pub.10.1007/bf00253936
5 sg:pub.10.1007/bf01360772
6 sg:pub.10.1007/bf02940719
7 sg:pub.10.1007/bfb0060041
8 https://doi.org/10.1016/s0304-0208(08)70766-7
9 https://doi.org/10.1080/00927877708822210
10 https://doi.org/10.1090/s0002-9939-1966-0199434-2
11 https://doi.org/10.1090/s0002-9947-1974-0358371-x
12 https://doi.org/10.2307/1997263
13 https://doi.org/10.2307/2035091
14 schema:datePublished 1979-09
15 schema:datePublishedReg 1979-09-01
16 schema:description We find numerical analytic invariants distinguishing between the infinite dimensional analogues of the classical Cartan domains of different type. Further, we define an invariant Hermitian metric on the classical bounded symmetric domains and certain infinite dimensional analogues and show that of all such metrics this is the only one (up to a constant multiple) which yields the best constant in the Schwarz-Pick inequality.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N6d073a37601e4daeb97724ed01e2586e
21 N79cd1563d20e41c49d941c087bc40e34
22 sg:journal.1136632
23 schema:name Analytic invariants and the Schwarz-Pick inequality
24 schema:pagination 177-197
25 schema:productId N4903af38eb00450485dde3e8535438ea
26 Ncce1ae2901744685bd67c65cb18b9257
27 Neba3e68628be4b30a5b612cd59f15d0c
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033319381
29 https://doi.org/10.1007/bf02760882
30 schema:sdDatePublished 2019-04-11T01:54
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nd7019d9367714b1baf851aecbe2d18a0
33 schema:url http://link.springer.com/10.1007/BF02760882
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N4903af38eb00450485dde3e8535438ea schema:name doi
38 schema:value 10.1007/bf02760882
39 rdf:type schema:PropertyValue
40 N6d073a37601e4daeb97724ed01e2586e schema:volumeNumber 34
41 rdf:type schema:PublicationVolume
42 N784cdb9cbc2f4efcb66ccc2f328baf60 rdf:first sg:person.01035375464.32
43 rdf:rest rdf:nil
44 N79cd1563d20e41c49d941c087bc40e34 schema:issueNumber 3
45 rdf:type schema:PublicationIssue
46 Ncce1ae2901744685bd67c65cb18b9257 schema:name dimensions_id
47 schema:value pub.1033319381
48 rdf:type schema:PropertyValue
49 Nd7019d9367714b1baf851aecbe2d18a0 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Neba3e68628be4b30a5b612cd59f15d0c schema:name readcube_id
52 schema:value 9eba591961fa022360543635b6d044df214a597ef1a6dc8e18dd749841879927
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136632 schema:issn 0021-2172
61 1565-8511
62 schema:name Israel Journal of Mathematics
63 rdf:type schema:Periodical
64 sg:person.01035375464.32 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
65 schema:familyName Harris
66 schema:givenName Lawrence A.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035375464.32
68 rdf:type schema:Person
69 sg:pub.10.1007/bf00253936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050553651
70 https://doi.org/10.1007/bf00253936
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01360772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048669979
73 https://doi.org/10.1007/bf01360772
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf02940719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044840156
76 https://doi.org/10.1007/bf02940719
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bfb0060041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047361091
79 https://doi.org/10.1007/bfb0060041
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/s0304-0208(08)70766-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041464407
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1080/00927877708822210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048425815
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1090/s0002-9939-1966-0199434-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024408464
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1090/s0002-9947-1974-0358371-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021587423
88 rdf:type schema:CreativeWork
89 https://doi.org/10.2307/1997263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069689853
90 rdf:type schema:CreativeWork
91 https://doi.org/10.2307/2035091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069706502
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.266539.d schema:alternateName University of Kentucky
94 schema:name Department of Mathematics, University of Kentucky, 40506, Lexington, Kentucky, USA
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...