Form-invariant renormalization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1969-04

AUTHORS

E. R. Caianiello, M. Marinaro, F. Guerra

ABSTRACT

This work is intended to accomplish the following purposes: 1) To present a concise and self-contained account of the formal renormalizative techniques developed in the past years (see references); their starting point is the requirement that all equations inx-space defining the Green's functions of a field theory should remain form-invariant under renormalization and be made meaningful by it. 2) To give a definite mathematical content to this method, by exhibiting a specific finite-part integration rule which satisfies all the formal requirements necessary for the method to be applicable (a detailed study of this integration rule is made in the accompanying work by Gnerra and Marinaro). 3) To provide the foundations for further investigations on the structure and applications of the renormalization group (of which the first is presented in the accompanying work by F. Esposito, U. Esposito and Guerra). For the sake of simplicity, in order to reduce to the bare minimum the necessary combinatorial apparatus, only the standard case of agϕ4 coupling is treated; the extension to other theories is straightforward. More... »

PAGES

713-755

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02757301

DOI

http://dx.doi.org/10.1007/bf02757301

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031494581


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Fisica Teorica dell'Universit\u00e0, Napoli", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Istituto di Fisica Teorica dell'Universit\u00e0, Napoli"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caianiello", 
        "givenName": "E. R.", 
        "id": "sg:person.010067517103.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010067517103.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Fisica Teorica dell'Universit\u00e0, Napoli", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Istituto di Fisica Teorica dell'Universit\u00e0, Napoli"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinaro", 
        "givenName": "M.", 
        "id": "sg:person.01027564003.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027564003.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale di Fisica Nucleare, Sezione di NapoliNapoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Istituto di Fisica Teorica dell'Universit\u00e0, Napoli", 
            "Istituto Nazionale di Fisica Nucleare, Sezione di NapoliNapoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guerra", 
        "givenName": "F.", 
        "id": "sg:person.014227365551.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014227365551.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02731544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053669829", 
          "https://doi.org/10.1007/bf02731544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02395016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017898857", 
          "https://doi.org/10.1007/bf02395016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02757302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046841299", 
          "https://doi.org/10.1007/bf02757302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01659974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044166268", 
          "https://doi.org/10.1007/bf01659974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02717921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023074331", 
          "https://doi.org/10.1007/bf02717921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02717920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036122330", 
          "https://doi.org/10.1007/bf02717920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02732779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012061548", 
          "https://doi.org/10.1007/bf02732779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02813097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042697014", 
          "https://doi.org/10.1007/bf02813097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006676932", 
          "https://doi.org/10.1007/bf01646496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02757303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000519326", 
          "https://doi.org/10.1007/bf02757303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02781659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005579666", 
          "https://doi.org/10.1007/bf02781659"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1969-04", 
    "datePublishedReg": "1969-04-01", 
    "description": "This work is intended to accomplish the following purposes: 1) To present a concise and self-contained account of the formal renormalizative techniques developed in the past years (see references); their starting point is the requirement that all equations inx-space defining the Green's functions of a field theory should remain form-invariant under renormalization and be made meaningful by it. 2) To give a definite mathematical content to this method, by exhibiting a specific finite-part integration rule which satisfies all the formal requirements necessary for the method to be applicable (a detailed study of this integration rule is made in the accompanying work by Gnerra and Marinaro). 3) To provide the foundations for further investigations on the structure and applications of the renormalization group (of which the first is presented in the accompanying work by F. Esposito, U. Esposito and Guerra). For the sake of simplicity, in order to reduce to the bare minimum the necessary combinatorial apparatus, only the standard case of ag\u03d54 coupling is treated; the extension to other theories is straightforward.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02757301", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1328730", 
        "issn": [
          "0369-3546", 
          "1826-9869"
        ], 
        "name": "Il Nuovo Cimento A (1965-1970)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "self-contained account", 
      "mathematical content", 
      "field theory", 
      "integration rule", 
      "renormalization group", 
      "sake of simplicity", 
      "Green's function", 
      "standard case", 
      "renormalization", 
      "theory", 
      "equations", 
      "bare minimum", 
      "starting point", 
      "function", 
      "extension", 
      "simplicity", 
      "formal requirements", 
      "applications", 
      "sake", 
      "rules", 
      "concise", 
      "requirements", 
      "point", 
      "technique", 
      "foundation", 
      "minimum", 
      "order", 
      "coupling", 
      "account", 
      "cases", 
      "work", 
      "structure", 
      "purpose", 
      "past year", 
      "investigation", 
      "apparatus", 
      "group", 
      "further investigation", 
      "years", 
      "content", 
      "method", 
      "formal renormalizative techniques", 
      "renormalizative techniques", 
      "definite mathematical content", 
      "specific finite-part integration rule", 
      "finite-part integration rule", 
      "necessary combinatorial apparatus", 
      "combinatorial apparatus", 
      "ag\u03d54 coupling", 
      "Form-invariant renormalization"
    ], 
    "name": "Form-invariant renormalization", 
    "pagination": "713-755", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031494581"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02757301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02757301", 
      "https://app.dimensions.ai/details/publication/pub.1031494581"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_93.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02757301"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02757301'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02757301'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02757301'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02757301'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      22 PREDICATES      86 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02757301 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndf357f34b7ef471a9b6d6f0e76d8085e
4 schema:citation sg:pub.10.1007/bf01646496
5 sg:pub.10.1007/bf01659974
6 sg:pub.10.1007/bf02395016
7 sg:pub.10.1007/bf02717920
8 sg:pub.10.1007/bf02717921
9 sg:pub.10.1007/bf02731544
10 sg:pub.10.1007/bf02732779
11 sg:pub.10.1007/bf02757302
12 sg:pub.10.1007/bf02757303
13 sg:pub.10.1007/bf02781659
14 sg:pub.10.1007/bf02813097
15 schema:datePublished 1969-04
16 schema:datePublishedReg 1969-04-01
17 schema:description This work is intended to accomplish the following purposes: 1) To present a concise and self-contained account of the formal renormalizative techniques developed in the past years (see references); their starting point is the requirement that all equations inx-space defining the Green's functions of a field theory should remain form-invariant under renormalization and be made meaningful by it. 2) To give a definite mathematical content to this method, by exhibiting a specific finite-part integration rule which satisfies all the formal requirements necessary for the method to be applicable (a detailed study of this integration rule is made in the accompanying work by Gnerra and Marinaro). 3) To provide the foundations for further investigations on the structure and applications of the renormalization group (of which the first is presented in the accompanying work by F. Esposito, U. Esposito and Guerra). For the sake of simplicity, in order to reduce to the bare minimum the necessary combinatorial apparatus, only the standard case of agϕ4 coupling is treated; the extension to other theories is straightforward.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N89c69c47364b4e3581233e312ffd28ee
22 N9ef68aa5257043938405f46c9f972bd8
23 sg:journal.1328730
24 schema:keywords Form-invariant renormalization
25 Green's function
26 account
27 agϕ4 coupling
28 apparatus
29 applications
30 bare minimum
31 cases
32 combinatorial apparatus
33 concise
34 content
35 coupling
36 definite mathematical content
37 equations
38 extension
39 field theory
40 finite-part integration rule
41 formal renormalizative techniques
42 formal requirements
43 foundation
44 function
45 further investigation
46 group
47 integration rule
48 investigation
49 mathematical content
50 method
51 minimum
52 necessary combinatorial apparatus
53 order
54 past year
55 point
56 purpose
57 renormalization
58 renormalization group
59 renormalizative techniques
60 requirements
61 rules
62 sake
63 sake of simplicity
64 self-contained account
65 simplicity
66 specific finite-part integration rule
67 standard case
68 starting point
69 structure
70 technique
71 theory
72 work
73 years
74 schema:name Form-invariant renormalization
75 schema:pagination 713-755
76 schema:productId N486a0958b2ff4aa3b76b86cfe186ad21
77 N59c5930c8bde4eb2921a7b6424e63805
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031494581
79 https://doi.org/10.1007/bf02757301
80 schema:sdDatePublished 2021-11-01T18:42
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N4374705709ad4f3e994962f842cd67f6
83 schema:url https://doi.org/10.1007/bf02757301
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N4374705709ad4f3e994962f842cd67f6 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N486a0958b2ff4aa3b76b86cfe186ad21 schema:name dimensions_id
90 schema:value pub.1031494581
91 rdf:type schema:PropertyValue
92 N4d7453fd14ca4dd9b67f05f529ba5aa7 rdf:first sg:person.014227365551.54
93 rdf:rest rdf:nil
94 N59c5930c8bde4eb2921a7b6424e63805 schema:name doi
95 schema:value 10.1007/bf02757301
96 rdf:type schema:PropertyValue
97 N89c69c47364b4e3581233e312ffd28ee schema:volumeNumber 60
98 rdf:type schema:PublicationVolume
99 N9ef68aa5257043938405f46c9f972bd8 schema:issueNumber 4
100 rdf:type schema:PublicationIssue
101 Ndf357f34b7ef471a9b6d6f0e76d8085e rdf:first sg:person.010067517103.22
102 rdf:rest Ne685359c4ef340c2af6a2bc3f7024b6a
103 Ne685359c4ef340c2af6a2bc3f7024b6a rdf:first sg:person.01027564003.17
104 rdf:rest N4d7453fd14ca4dd9b67f05f529ba5aa7
105 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
106 schema:name Mathematical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
109 schema:name Pure Mathematics
110 rdf:type schema:DefinedTerm
111 sg:journal.1328730 schema:issn 0369-3546
112 1826-9869
113 schema:name Il Nuovo Cimento A (1965-1970)
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.010067517103.22 schema:affiliation grid-institutes:None
117 schema:familyName Caianiello
118 schema:givenName E. R.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010067517103.22
120 rdf:type schema:Person
121 sg:person.01027564003.17 schema:affiliation grid-institutes:None
122 schema:familyName Marinaro
123 schema:givenName M.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027564003.17
125 rdf:type schema:Person
126 sg:person.014227365551.54 schema:affiliation grid-institutes:None
127 schema:familyName Guerra
128 schema:givenName F.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014227365551.54
130 rdf:type schema:Person
131 sg:pub.10.1007/bf01646496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006676932
132 https://doi.org/10.1007/bf01646496
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf01659974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044166268
135 https://doi.org/10.1007/bf01659974
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf02395016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017898857
138 https://doi.org/10.1007/bf02395016
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/bf02717920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036122330
141 https://doi.org/10.1007/bf02717920
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bf02717921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023074331
144 https://doi.org/10.1007/bf02717921
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf02731544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053669829
147 https://doi.org/10.1007/bf02731544
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02732779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012061548
150 https://doi.org/10.1007/bf02732779
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf02757302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046841299
153 https://doi.org/10.1007/bf02757302
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/bf02757303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000519326
156 https://doi.org/10.1007/bf02757303
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/bf02781659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005579666
159 https://doi.org/10.1007/bf02781659
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/bf02813097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042697014
162 https://doi.org/10.1007/bf02813097
163 rdf:type schema:CreativeWork
164 grid-institutes:None schema:alternateName Istituto Nazionale di Fisica Nucleare, Sezione di NapoliNapoli, Italy
165 Istituto di Fisica Teorica dell'Università, Napoli
166 schema:name Istituto Nazionale di Fisica Nucleare, Sezione di NapoliNapoli, Italy
167 Istituto di Fisica Teorica dell'Università, Napoli
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...