On the solutions of the bethe-salpeter equation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1963-12

AUTHORS

A. Bastai, L. Bertocchi, G. Furlan, M. Tonin

ABSTRACT

We study the solutions of the Bethe-Salpeter equation for bound states, in the ladder approximation, in the case of potentials both regular and singular near the origin. Two methods are presented, one in momentum space, the other in co-ordinate space, which allow the complete determination of eigenvalues and eigenfunctions, in the case where both the total energyE of the state and the mass of the exchanged particle are zero. More... »

PAGES

1532-1554

References to SciGraph publications

  • 1963-12. On the treatment of singular bethe-salpeter equations in IL NUOVO CIMENTO (1955-1965)
  • 1962-10. An integral equation for high-energy cross-sections in IL NUOVO CIMENTO (1955-1965)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02749829

    DOI

    http://dx.doi.org/10.1007/bf02749829

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010055831


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sezione di Torino, Istituto Nazionale di Fisica Nucleare, Italia", 
              "id": "http://www.grid.ac/institutes/grid.470222.1", 
              "name": [
                "Istituto di Fisica dell\u2019Universit\u00e1, Torino", 
                "Sezione di Torino, Istituto Nazionale di Fisica Nucleare, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bastai", 
            "givenName": "A.", 
            "id": "sg:person.011245342045.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245342045.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italia", 
              "id": "http://www.grid.ac/institutes/grid.470193.8", 
              "name": [
                "Istituto di Fisica dell\u2019 Universit\u00e1, Bologna", 
                "Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bertocchi", 
            "givenName": "L.", 
            "id": "sg:person.015065112627.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065112627.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CERN, Geneva", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furlan", 
            "givenName": "G.", 
            "id": "sg:person.014625714377.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale di Fisica Nucleare, Sezione di Padova", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Istituto di Fisica dell \u2019Universit\u00e0, Padova", 
                "Istituto Nazionale di Fisica Nucleare, Sezione di Padova"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tonin", 
            "givenName": "M.", 
            "id": "sg:person.013025010150.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013025010150.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02787040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020157777", 
              "https://doi.org/10.1007/bf02787040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02749828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044761429", 
              "https://doi.org/10.1007/bf02749828"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1963-12", 
        "datePublishedReg": "1963-12-01", 
        "description": "We study the solutions of the Bethe-Salpeter equation for bound states, in the ladder approximation, in the case of potentials both regular and singular near the origin. Two methods are presented, one in momentum space, the other in co-ordinate space, which allow the complete determination of eigenvalues and eigenfunctions, in the case where both the total energyE of the state and the mass of the exchanged particle are zero.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02749829", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1336106", 
            "issn": [
              "1827-6121"
            ], 
            "name": "Il Nuovo Cimento (1955-1965)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "keywords": [
          "Bethe-Salpeter equation", 
          "co-ordinate space", 
          "case of potentials", 
          "total energyE", 
          "ladder approximation", 
          "equations", 
          "momentum space", 
          "space", 
          "solution", 
          "eigenfunctions", 
          "eigenvalues", 
          "approximation", 
          "complete determination", 
          "energyE", 
          "cases", 
          "state", 
          "particles", 
          "determination", 
          "mass", 
          "potential", 
          "origin", 
          "method"
        ], 
        "name": "On the solutions of the bethe-salpeter equation", 
        "pagination": "1532-1554", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010055831"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02749829"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02749829", 
          "https://app.dimensions.ai/details/publication/pub.1010055831"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_80.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02749829"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02749829'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02749829'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02749829'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02749829'


     

    This table displays all metadata directly associated to this object as RDF triples.

    120 TRIPLES      22 PREDICATES      50 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02749829 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N265dfc4403ed47d4b9e23cb216072879
    4 schema:citation sg:pub.10.1007/bf02749828
    5 sg:pub.10.1007/bf02787040
    6 schema:datePublished 1963-12
    7 schema:datePublishedReg 1963-12-01
    8 schema:description We study the solutions of the Bethe-Salpeter equation for bound states, in the ladder approximation, in the case of potentials both regular and singular near the origin. Two methods are presented, one in momentum space, the other in co-ordinate space, which allow the complete determination of eigenvalues and eigenfunctions, in the case where both the total energyE of the state and the mass of the exchanged particle are zero.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf Nc5337d0e2d0849f9bb4cbd9c7d76279f
    13 Nfd9507b0e7a94ce6bb9b7e417a8107cd
    14 sg:journal.1336106
    15 schema:keywords Bethe-Salpeter equation
    16 approximation
    17 case of potentials
    18 cases
    19 co-ordinate space
    20 complete determination
    21 determination
    22 eigenfunctions
    23 eigenvalues
    24 energyE
    25 equations
    26 ladder approximation
    27 mass
    28 method
    29 momentum space
    30 origin
    31 particles
    32 potential
    33 solution
    34 space
    35 state
    36 total energyE
    37 schema:name On the solutions of the bethe-salpeter equation
    38 schema:pagination 1532-1554
    39 schema:productId N16a18544eef74f85ac980f469110da17
    40 Necfac29652be44ca9667ca9089526153
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010055831
    42 https://doi.org/10.1007/bf02749829
    43 schema:sdDatePublished 2021-12-01T19:42
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N0d528411a24b4b5fbd8b1caac9fd0ff1
    46 schema:url https://doi.org/10.1007/bf02749829
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N0d528411a24b4b5fbd8b1caac9fd0ff1 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N16a18544eef74f85ac980f469110da17 schema:name doi
    53 schema:value 10.1007/bf02749829
    54 rdf:type schema:PropertyValue
    55 N265dfc4403ed47d4b9e23cb216072879 rdf:first sg:person.011245342045.28
    56 rdf:rest Nba7029fd335c4405b7987547208722f6
    57 N6e90d334125f429fa5663a2169e0c9eb rdf:first sg:person.014625714377.67
    58 rdf:rest Nb604c88160b74a33a67360860a72bab6
    59 Nb604c88160b74a33a67360860a72bab6 rdf:first sg:person.013025010150.10
    60 rdf:rest rdf:nil
    61 Nba7029fd335c4405b7987547208722f6 rdf:first sg:person.015065112627.46
    62 rdf:rest N6e90d334125f429fa5663a2169e0c9eb
    63 Nc5337d0e2d0849f9bb4cbd9c7d76279f schema:volumeNumber 30
    64 rdf:type schema:PublicationVolume
    65 Necfac29652be44ca9667ca9089526153 schema:name dimensions_id
    66 schema:value pub.1010055831
    67 rdf:type schema:PropertyValue
    68 Nfd9507b0e7a94ce6bb9b7e417a8107cd schema:issueNumber 6
    69 rdf:type schema:PublicationIssue
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Applied Mathematics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1336106 schema:issn 1827-6121
    77 schema:name Il Nuovo Cimento (1955-1965)
    78 schema:publisher Springer Nature
    79 rdf:type schema:Periodical
    80 sg:person.011245342045.28 schema:affiliation grid-institutes:grid.470222.1
    81 schema:familyName Bastai
    82 schema:givenName A.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245342045.28
    84 rdf:type schema:Person
    85 sg:person.013025010150.10 schema:affiliation grid-institutes:None
    86 schema:familyName Tonin
    87 schema:givenName M.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013025010150.10
    89 rdf:type schema:Person
    90 sg:person.014625714377.67 schema:affiliation grid-institutes:grid.9132.9
    91 schema:familyName Furlan
    92 schema:givenName G.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67
    94 rdf:type schema:Person
    95 sg:person.015065112627.46 schema:affiliation grid-institutes:grid.470193.8
    96 schema:familyName Bertocchi
    97 schema:givenName L.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015065112627.46
    99 rdf:type schema:Person
    100 sg:pub.10.1007/bf02749828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044761429
    101 https://doi.org/10.1007/bf02749828
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf02787040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020157777
    104 https://doi.org/10.1007/bf02787040
    105 rdf:type schema:CreativeWork
    106 grid-institutes:None schema:alternateName Istituto Nazionale di Fisica Nucleare, Sezione di Padova
    107 schema:name Istituto Nazionale di Fisica Nucleare, Sezione di Padova
    108 Istituto di Fisica dell ’Università, Padova
    109 rdf:type schema:Organization
    110 grid-institutes:grid.470193.8 schema:alternateName Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italia
    111 schema:name Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italia
    112 Istituto di Fisica dell’ Universitá, Bologna
    113 rdf:type schema:Organization
    114 grid-institutes:grid.470222.1 schema:alternateName Sezione di Torino, Istituto Nazionale di Fisica Nucleare, Italia
    115 schema:name Istituto di Fisica dell’Universitá, Torino
    116 Sezione di Torino, Istituto Nazionale di Fisica Nucleare, Italia
    117 rdf:type schema:Organization
    118 grid-institutes:grid.9132.9 schema:alternateName CERN, Geneva
    119 schema:name CERN, Geneva
    120 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...