A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-02

AUTHORS

G. Benettin, L. Galgani, A. Giorgilli, J. -M. Strelcyn

ABSTRACT

In this paper a proof is given of Kolmogorov’s theorem on the existence of invariant tori in nearly integrable Hamiltonian systems. The scheme of proof is that of Kolmogorov, the only difference being in the way canonical transformations near the identity are defined. Precisely, use is made of the Lie method, which avoids any inversion and thus any use of the implicit-function theorem. This technical fact eliminates a spurious ingredient and simplifies the establishment of a central estimate. More... »

PAGES

201-223

References to SciGraph publications

Journal

TITLE

Il Nuovo Cimento B (1971-1996)

ISSUE

2

VOLUME

79

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02748972

DOI

http://dx.doi.org/10.1007/bf02748972

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049886350


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica dell\u2019Universit\u00e0, Via F. Marzolo 8, Padova, Italia", 
            "Gruppo Nazionale di Struttura della Materia del C.N.R., Unit\u00e0 di Padova, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benettin", 
        "givenName": "G.", 
        "id": "sg:person.014313317357.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica dell\u2019Universit\u00e0, Via Saldini 50, Milano, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galgani", 
        "givenName": "L.", 
        "id": "sg:person.010346707747.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica dell\u2019Universit\u00e0, Via Celoria 16, Milano, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgilli", 
        "givenName": "A.", 
        "id": "sg:person.010532704656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris 13 University", 
          "id": "https://www.grid.ac/institutes/grid.11318.3a", 
          "name": [
            "Department de Math\u00e9matiques, Centre Scientifique et Polyt\u00e9chnique, Universit\u00e9 Paris-Nord, 93, Villetaneuse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strelcyn", 
        "givenName": "J. -M.", 
        "id": "sg:person.010500651343.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500651343.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01625281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028757312", 
          "https://doi.org/10.1007/bf01625281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039493823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039493823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160350504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046452982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160350504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046452982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(81)90116-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053034865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(81)90116-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053034865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674357"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-02", 
    "datePublishedReg": "1984-02-01", 
    "description": "In this paper a proof is given of Kolmogorov\u2019s theorem on the existence of invariant tori in nearly integrable Hamiltonian systems. The scheme of proof is that of Kolmogorov, the only difference being in the way canonical transformations near the identity are defined. Precisely, use is made of the Lie method, which avoids any inversion and thus any use of the implicit-function theorem. This technical fact eliminates a spurious ingredient and simplifies the establishment of a central estimate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02748972", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336108", 
        "issn": [
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1971-1996)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "79"
      }
    ], 
    "name": "A proof of Kolmogorov\u2019s theorem on invariant tori using canonical transformations defined by the Lie method", 
    "pagination": "201-223", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eda41ad264493f63ee2389ca22326d721510cfc43a3e6ef531d7ac41293089e5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02748972"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049886350"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02748972", 
      "https://app.dimensions.ai/details/publication/pub.1049886350"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000561.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02748972"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02748972'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02748972'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02748972'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02748972'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02748972 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8f19da115ea54e9ebbb6f555e91a549b
4 schema:citation sg:pub.10.1007/bf01625281
5 https://doi.org/10.1002/cpa.3160280104
6 https://doi.org/10.1002/cpa.3160350504
7 https://doi.org/10.1016/0021-8928(81)90116-7
8 https://doi.org/10.2307/1968952
9 schema:datePublished 1984-02
10 schema:datePublishedReg 1984-02-01
11 schema:description In this paper a proof is given of Kolmogorov’s theorem on the existence of invariant tori in nearly integrable Hamiltonian systems. The scheme of proof is that of Kolmogorov, the only difference being in the way canonical transformations near the identity are defined. Precisely, use is made of the Lie method, which avoids any inversion and thus any use of the implicit-function theorem. This technical fact eliminates a spurious ingredient and simplifies the establishment of a central estimate.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N1cee044b6cff4e8ab3873045ce112b66
16 N57ad3a4bac76499586cf7a06a4863237
17 sg:journal.1336108
18 schema:name A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method
19 schema:pagination 201-223
20 schema:productId N2ca1a95427544c31af30b2f6432481b7
21 N30e3efb2e59a4cf389e25463101151c8
22 N342a376ddf654577b4356237c8aa9831
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049886350
24 https://doi.org/10.1007/bf02748972
25 schema:sdDatePublished 2019-04-10T20:54
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nd7d5e25707304b248a7192ab9666acfc
28 schema:url http://link.springer.com/10.1007/BF02748972
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N02c916b1d339451d8665a4e8721fd875 schema:name Dipartimento di Matematica dell’Università, Via Saldini 50, Milano, Italia
33 rdf:type schema:Organization
34 N1cee044b6cff4e8ab3873045ce112b66 schema:volumeNumber 79
35 rdf:type schema:PublicationVolume
36 N2ca1a95427544c31af30b2f6432481b7 schema:name readcube_id
37 schema:value eda41ad264493f63ee2389ca22326d721510cfc43a3e6ef531d7ac41293089e5
38 rdf:type schema:PropertyValue
39 N30e3efb2e59a4cf389e25463101151c8 schema:name doi
40 schema:value 10.1007/bf02748972
41 rdf:type schema:PropertyValue
42 N342a376ddf654577b4356237c8aa9831 schema:name dimensions_id
43 schema:value pub.1049886350
44 rdf:type schema:PropertyValue
45 N4c9c7e7336e54408825a2e6f0dd890d3 schema:name Dipartimento di Fisica dell’Università, Via Celoria 16, Milano, Italia
46 rdf:type schema:Organization
47 N51f115e58715400ca0f3a03fcfa9b3db rdf:first sg:person.010532704656.30
48 rdf:rest N9fa92ab0330b4908874b480cf984ab5e
49 N57ad3a4bac76499586cf7a06a4863237 schema:issueNumber 2
50 rdf:type schema:PublicationIssue
51 N63c8195670fb4162a1813f0400cc4684 rdf:first sg:person.010346707747.76
52 rdf:rest N51f115e58715400ca0f3a03fcfa9b3db
53 N8f19da115ea54e9ebbb6f555e91a549b rdf:first sg:person.014313317357.52
54 rdf:rest N63c8195670fb4162a1813f0400cc4684
55 N9fa92ab0330b4908874b480cf984ab5e rdf:first sg:person.010500651343.39
56 rdf:rest rdf:nil
57 Nbb2fa8c7fb594e9cb4b08c00b8c120ef schema:name Dipartimento di Fisica dell’Università, Via F. Marzolo 8, Padova, Italia
58 Gruppo Nazionale di Struttura della Materia del C.N.R., Unità di Padova, Italia
59 rdf:type schema:Organization
60 Nd7d5e25707304b248a7192ab9666acfc schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1336108 schema:issn 1826-9877
69 schema:name Il Nuovo Cimento B (1971-1996)
70 rdf:type schema:Periodical
71 sg:person.010346707747.76 schema:affiliation N02c916b1d339451d8665a4e8721fd875
72 schema:familyName Galgani
73 schema:givenName L.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76
75 rdf:type schema:Person
76 sg:person.010500651343.39 schema:affiliation https://www.grid.ac/institutes/grid.11318.3a
77 schema:familyName Strelcyn
78 schema:givenName J. -M.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500651343.39
80 rdf:type schema:Person
81 sg:person.010532704656.30 schema:affiliation N4c9c7e7336e54408825a2e6f0dd890d3
82 schema:familyName Giorgilli
83 schema:givenName A.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
85 rdf:type schema:Person
86 sg:person.014313317357.52 schema:affiliation Nbb2fa8c7fb594e9cb4b08c00b8c120ef
87 schema:familyName Benettin
88 schema:givenName G.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52
90 rdf:type schema:Person
91 sg:pub.10.1007/bf01625281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028757312
92 https://doi.org/10.1007/bf01625281
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/cpa.3160280104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039493823
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/cpa.3160350504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046452982
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0021-8928(81)90116-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053034865
99 rdf:type schema:CreativeWork
100 https://doi.org/10.2307/1968952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674357
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.11318.3a schema:alternateName Paris 13 University
103 schema:name Department de Mathématiques, Centre Scientifique et Polytéchnique, Université Paris-Nord, 93, Villetaneuse, France
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...