On the reliability of numerical studies of stochasticity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-04

AUTHORS

G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli, J. M. Strelcyn

ABSTRACT

In the numerical study of classical dynamical systems presenting stochastic behaviour one frequently makes use, in an explicit or an implicit way, of the Birkhoff ergodic theorem. The correct interpretation of the obtained results presents some delicate problems related to the coexistence of many mutually singular invariant measures. In this paper we study this question in an experimental way on some simple model examples. More... »

PAGES

211-232

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02748874

DOI

http://dx.doi.org/10.1007/bf02748874

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004074480


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Istituto di Fisica dell\u2019Universit\u00e0, Padova, Italia", 
            "Unit\u00e0 GNSM-CNR, Padova, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benettin", 
        "givenName": "G.", 
        "id": "sg:person.014313317357.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Istituto di Fisica dell\u2019Universit\u00e0, Parma, Italia", 
            "Unit\u00e0 Risonanze Magnetiche del GNSM-CNR, Parma, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casartelli", 
        "givenName": "M.", 
        "id": "sg:person.015225266142.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Istituto di Fisica dell\u2019Universit\u00e0, Milano, Italia", 
            "Istituto di Matematica dell\u2019Universit\u00e0, Milano, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galgani", 
        "givenName": "L.", 
        "id": "sg:person.010346707747.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Istituto di Fisica dell\u2019Universit\u00e0, Milano, Italia", 
            "Istituto di Matematica dell\u2019Universit\u00e0, Milano, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgilli", 
        "givenName": "A.", 
        "id": "sg:person.010532704656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "D\u00e9partment de Math\u00e9matiques, Centre Scientifique et Polytechnique, Universit\u00e9 Paris-Nord-93, Villetanause, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strelcyn", 
        "givenName": "J. M.", 
        "id": "sg:person.010500651343.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500651343.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01768481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013584679", 
          "https://doi.org/10.1007/bf01768481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01768481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013584679", 
          "https://doi.org/10.1007/bf01768481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02730340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031257030", 
          "https://doi.org/10.1007/bf02730340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1973-0335758-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048197270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1972v027n04abeh001383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.13.1921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060465700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.13.1921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060465700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674180"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-04", 
    "datePublishedReg": "1979-04-01", 
    "description": "In the numerical study of classical dynamical systems presenting stochastic behaviour one frequently makes use, in an explicit or an implicit way, of the Birkhoff ergodic theorem. The correct interpretation of the obtained results presents some delicate problems related to the coexistence of many mutually singular invariant measures. In this paper we study this question in an experimental way on some simple model examples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02748874", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336108", 
        "issn": [
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1971-1996)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "On the reliability of numerical studies of stochasticity", 
    "pagination": "211-232", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "136a0d37c023d254fda9c6b1b132c6d39ea182a8c892fdf4f5b9d7a8b6c15e74"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02748874"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004074480"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02748874", 
      "https://app.dimensions.ai/details/publication/pub.1004074480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000485.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02748874"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02748874'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02748874'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02748874'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02748874'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02748874 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N9d710195b7224e209d6f22c977c380f7
4 schema:citation sg:pub.10.1007/bf01768481
5 sg:pub.10.1007/bf02730340
6 https://doi.org/10.1070/rm1972v027n04abeh001383
7 https://doi.org/10.1090/s0002-9947-1973-0335758-1
8 https://doi.org/10.1103/physreva.13.1921
9 https://doi.org/10.1103/physreva.14.2338
10 https://doi.org/10.1103/physreva.17.773
11 https://doi.org/10.1103/physreva.17.786
12 https://doi.org/10.2307/1968772
13 schema:datePublished 1979-04
14 schema:datePublishedReg 1979-04-01
15 schema:description In the numerical study of classical dynamical systems presenting stochastic behaviour one frequently makes use, in an explicit or an implicit way, of the Birkhoff ergodic theorem. The correct interpretation of the obtained results presents some delicate problems related to the coexistence of many mutually singular invariant measures. In this paper we study this question in an experimental way on some simple model examples.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N445da3fe86c5465cb3204c0af49e10e3
20 N82fa53ce9a8246beb931dfdc0bf0138d
21 sg:journal.1336108
22 schema:name On the reliability of numerical studies of stochasticity
23 schema:pagination 211-232
24 schema:productId N2b4ece7daaa6477eb45eba89c7906519
25 N508e32ffb082418ebab0c3e883b319b1
26 N6aa9e05f6c514dc78345c9755ffe2a42
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004074480
28 https://doi.org/10.1007/bf02748874
29 schema:sdDatePublished 2019-04-10T19:51
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N0328816ca26e479e825b1999367a80b7
32 schema:url http://link.springer.com/10.1007/BF02748874
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N0328816ca26e479e825b1999367a80b7 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N2b4ece7daaa6477eb45eba89c7906519 schema:name readcube_id
39 schema:value 136a0d37c023d254fda9c6b1b132c6d39ea182a8c892fdf4f5b9d7a8b6c15e74
40 rdf:type schema:PropertyValue
41 N445da3fe86c5465cb3204c0af49e10e3 schema:volumeNumber 50
42 rdf:type schema:PublicationVolume
43 N508e32ffb082418ebab0c3e883b319b1 schema:name dimensions_id
44 schema:value pub.1004074480
45 rdf:type schema:PropertyValue
46 N522bf9c3e39d48f7b4ea466de6a102c4 schema:name Départment de Mathématiques, Centre Scientifique et Polytechnique, Université Paris-Nord-93, Villetanause, France
47 rdf:type schema:Organization
48 N6aa9e05f6c514dc78345c9755ffe2a42 schema:name doi
49 schema:value 10.1007/bf02748874
50 rdf:type schema:PropertyValue
51 N708e92ab180b44a880bb48b542670436 rdf:first sg:person.015225266142.12
52 rdf:rest N99fe220a5cf547b49718a1827b9a4ea3
53 N718c026a6a1941f2b4cc007437e01052 rdf:first sg:person.010500651343.39
54 rdf:rest rdf:nil
55 N82fa53ce9a8246beb931dfdc0bf0138d schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 N9750fc7a76e048758797eb1ad0a1b0a0 rdf:first sg:person.010532704656.30
58 rdf:rest N718c026a6a1941f2b4cc007437e01052
59 N99fe220a5cf547b49718a1827b9a4ea3 rdf:first sg:person.010346707747.76
60 rdf:rest N9750fc7a76e048758797eb1ad0a1b0a0
61 N9d710195b7224e209d6f22c977c380f7 rdf:first sg:person.014313317357.52
62 rdf:rest N708e92ab180b44a880bb48b542670436
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
67 schema:name Applied Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1336108 schema:issn 1826-9877
70 schema:name Il Nuovo Cimento B (1971-1996)
71 rdf:type schema:Periodical
72 sg:person.010346707747.76 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
73 schema:familyName Galgani
74 schema:givenName L.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76
76 rdf:type schema:Person
77 sg:person.010500651343.39 schema:affiliation N522bf9c3e39d48f7b4ea466de6a102c4
78 schema:familyName Strelcyn
79 schema:givenName J. M.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500651343.39
81 rdf:type schema:Person
82 sg:person.010532704656.30 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
83 schema:familyName Giorgilli
84 schema:givenName A.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
86 rdf:type schema:Person
87 sg:person.014313317357.52 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
88 schema:familyName Benettin
89 schema:givenName G.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52
91 rdf:type schema:Person
92 sg:person.015225266142.12 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
93 schema:familyName Casartelli
94 schema:givenName M.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12
96 rdf:type schema:Person
97 sg:pub.10.1007/bf01768481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013584679
98 https://doi.org/10.1007/bf01768481
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02730340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031257030
101 https://doi.org/10.1007/bf02730340
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1070/rm1972v027n04abeh001383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194041
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/s0002-9947-1973-0335758-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048197270
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physreva.13.1921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060465700
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreva.14.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466055
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physreva.17.773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467071
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physreva.17.786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467072
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2307/1968772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674180
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
118 schema:name Istituto di Fisica dell’Università, Parma, Italia
119 Unità Risonanze Magnetiche del GNSM-CNR, Parma, Italia
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
122 schema:name Istituto di Fisica dell’Università, Milano, Italia
123 Istituto di Matematica dell’Università, Milano, Italia
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
126 schema:name Istituto di Fisica dell’Università, Padova, Italia
127 Unità GNSM-CNR, Padova, Italia
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...