Ontology type: schema:ScholarlyArticle
1985-12
AUTHORS ABSTRACTTheγA-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis forγ ± 0;γ ± 1. The co-ordinate transformationr → (λr)n,t →λn(1-λ)t withn = 1, 2,..., as λ → 0 is a mapping which maps the Weyl source with density γ/2 and length 2m into a semi-infinite line source with densityγ/2, located on the lower half of the z-axis. When terms of the orderλn(3-λ) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle θ and the parameter γ. More... »
PAGES497-502
http://scigraph.springernature.com/pub.10.1007/bf02746748
DOIhttp://dx.doi.org/10.1007/bf02746748
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039149581
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece",
"id": "http://www.grid.ac/institutes/grid.4793.9",
"name": [
"Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece"
],
"type": "Organization"
},
"familyName": "Papadopoulos",
"givenName": "D.",
"id": "sg:person.015306374025.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306374025.12"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01877517",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042906989",
"https://doi.org/10.1007/bf01877517"
],
"type": "CreativeWork"
}
],
"datePublished": "1985-12",
"datePublishedReg": "1985-12-01",
"description": "The\u03b3A-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis for\u03b3 \u00b1 0;\u03b3 \u00b1 1. The co-ordinate transformationr \u2192 (\u03bbr)n,t \u2192\u03bbn(1-\u03bb)t withn = 1, 2,..., as \u03bb \u2192 0 is a mapping which maps the Weyl source with density \u03b3/2 and length 2m into a semi-infinite line source with density\u03b3/2, located on the lower half of the z-axis. When terms of the order\u03bbn(3-\u03bb) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle \u03b8 and the parameter \u03b3.",
"genre": "article",
"id": "sg:pub.10.1007/bf02746748",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1336111",
"issn": [
"1827-613X"
],
"name": "Lettere al Nuovo Cimento (1971-1985)",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "44"
}
],
"keywords": [
"Einstein field equations",
"field equations",
"Einstein equations",
"solitonic solutions",
"nonvacuum solution",
"symmetric solutions",
"canonical form",
"parameter \u03b3",
"co-ordinate mapping",
"line source",
"equations",
"angle \u03b8",
"different values",
"certain conditions",
"solution",
"for\u03b3",
"\u03b3/2",
"withn",
"particular glass",
"vacuum",
"static",
"mapping",
"terms",
"axis",
"energy",
"glass",
"form",
"source",
"lower half",
"conditions",
"values",
"length",
"effect",
"half"
],
"name": "Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations",
"pagination": "497-502",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039149581"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02746748"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02746748",
"https://app.dimensions.ai/details/publication/pub.1039149581"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T21:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_213.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02746748"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'
This table displays all metadata directly associated to this object as RDF triples.
95 TRIPLES
22 PREDICATES
61 URIs
52 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02746748 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | Ndded470497d342a092a119d0d7bdb64b |
4 | ″ | schema:citation | sg:pub.10.1007/bf01877517 |
5 | ″ | schema:datePublished | 1985-12 |
6 | ″ | schema:datePublishedReg | 1985-12-01 |
7 | ″ | schema:description | TheγA-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis forγ ± 0;γ ± 1. The co-ordinate transformationr → (λr)n,t →λn(1-λ)t withn = 1, 2,..., as λ → 0 is a mapping which maps the Weyl source with density γ/2 and length 2m into a semi-infinite line source with densityγ/2, located on the lower half of the z-axis. When terms of the orderλn(3-λ) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle θ and the parameter γ. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N36abaf33d90f446d950ddcbd45a148cc |
12 | ″ | ″ | Nefd3024f6b394a50a169853554d70122 |
13 | ″ | ″ | sg:journal.1336111 |
14 | ″ | schema:keywords | Einstein equations |
15 | ″ | ″ | Einstein field equations |
16 | ″ | ″ | angle θ |
17 | ″ | ″ | axis |
18 | ″ | ″ | canonical form |
19 | ″ | ″ | certain conditions |
20 | ″ | ″ | co-ordinate mapping |
21 | ″ | ″ | conditions |
22 | ″ | ″ | different values |
23 | ″ | ″ | effect |
24 | ″ | ″ | energy |
25 | ″ | ″ | equations |
26 | ″ | ″ | field equations |
27 | ″ | ″ | form |
28 | ″ | ″ | forγ |
29 | ″ | ″ | glass |
30 | ″ | ″ | half |
31 | ″ | ″ | length |
32 | ″ | ″ | line source |
33 | ″ | ″ | lower half |
34 | ″ | ″ | mapping |
35 | ″ | ″ | nonvacuum solution |
36 | ″ | ″ | parameter γ |
37 | ″ | ″ | particular glass |
38 | ″ | ″ | solitonic solutions |
39 | ″ | ″ | solution |
40 | ″ | ″ | source |
41 | ″ | ″ | static |
42 | ″ | ″ | symmetric solutions |
43 | ″ | ″ | terms |
44 | ″ | ″ | vacuum |
45 | ″ | ″ | values |
46 | ″ | ″ | withn |
47 | ″ | ″ | γ/2 |
48 | ″ | schema:name | Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations |
49 | ″ | schema:pagination | 497-502 |
50 | ″ | schema:productId | N1fe77f43a4b645c2b053552d39698fd0 |
51 | ″ | ″ | N500597b6d0314a94bb3f7a30795005ce |
52 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039149581 |
53 | ″ | ″ | https://doi.org/10.1007/bf02746748 |
54 | ″ | schema:sdDatePublished | 2022-06-01T21:58 |
55 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
56 | ″ | schema:sdPublisher | N81e18224891a461d83aa1cb5cf8b602a |
57 | ″ | schema:url | https://doi.org/10.1007/bf02746748 |
58 | ″ | sgo:license | sg:explorer/license/ |
59 | ″ | sgo:sdDataset | articles |
60 | ″ | rdf:type | schema:ScholarlyArticle |
61 | N1fe77f43a4b645c2b053552d39698fd0 | schema:name | doi |
62 | ″ | schema:value | 10.1007/bf02746748 |
63 | ″ | rdf:type | schema:PropertyValue |
64 | N36abaf33d90f446d950ddcbd45a148cc | schema:volumeNumber | 44 |
65 | ″ | rdf:type | schema:PublicationVolume |
66 | N500597b6d0314a94bb3f7a30795005ce | schema:name | dimensions_id |
67 | ″ | schema:value | pub.1039149581 |
68 | ″ | rdf:type | schema:PropertyValue |
69 | N81e18224891a461d83aa1cb5cf8b602a | schema:name | Springer Nature - SN SciGraph project |
70 | ″ | rdf:type | schema:Organization |
71 | Ndded470497d342a092a119d0d7bdb64b | rdf:first | sg:person.015306374025.12 |
72 | ″ | rdf:rest | rdf:nil |
73 | Nefd3024f6b394a50a169853554d70122 | schema:issueNumber | 7 |
74 | ″ | rdf:type | schema:PublicationIssue |
75 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
76 | ″ | schema:name | Chemical Sciences |
77 | ″ | rdf:type | schema:DefinedTerm |
78 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
79 | ″ | schema:name | Physical Chemistry (incl. Structural) |
80 | ″ | rdf:type | schema:DefinedTerm |
81 | sg:journal.1336111 | schema:issn | 1827-613X |
82 | ″ | schema:name | Lettere al Nuovo Cimento (1971-1985) |
83 | ″ | schema:publisher | Springer Nature |
84 | ″ | rdf:type | schema:Periodical |
85 | sg:person.015306374025.12 | schema:affiliation | grid-institutes:grid.4793.9 |
86 | ″ | schema:familyName | Papadopoulos |
87 | ″ | schema:givenName | D. |
88 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306374025.12 |
89 | ″ | rdf:type | schema:Person |
90 | sg:pub.10.1007/bf01877517 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042906989 |
91 | ″ | ″ | https://doi.org/10.1007/bf01877517 |
92 | ″ | rdf:type | schema:CreativeWork |
93 | grid-institutes:grid.4793.9 | schema:alternateName | Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece |
94 | ″ | schema:name | Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece |
95 | ″ | rdf:type | schema:Organization |