Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-12

AUTHORS

D. Papadopoulos

ABSTRACT

TheγA-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis forγ ± 0;γ ± 1. The co-ordinate transformationr → (λr)n,t →λn(1-λ)t withn = 1, 2,..., as λ → 0 is a mapping which maps the Weyl source with density γ/2 and length 2m into a semi-infinite line source with densityγ/2, located on the lower half of the z-axis. When terms of the orderλn(3-λ) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle θ and the parameter γ. More... »

PAGES

497-502

References to SciGraph publications

  • 1972-06. Black holes in general relativity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02746748

    DOI

    http://dx.doi.org/10.1007/bf02746748

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039149581


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece", 
              "id": "http://www.grid.ac/institutes/grid.4793.9", 
              "name": [
                "Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Papadopoulos", 
            "givenName": "D.", 
            "id": "sg:person.015306374025.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306374025.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01877517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042906989", 
              "https://doi.org/10.1007/bf01877517"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-12", 
        "datePublishedReg": "1985-12-01", 
        "description": "The\u03b3A-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis for\u03b3 \u00b1 0;\u03b3 \u00b1 1. The co-ordinate transformationr \u2192 (\u03bbr)n,t \u2192\u03bbn(1-\u03bb)t withn = 1, 2,..., as \u03bb \u2192 0 is a mapping which maps the Weyl source with density \u03b3/2 and length 2m into a semi-infinite line source with density\u03b3/2, located on the lower half of the z-axis. When terms of the order\u03bbn(3-\u03bb) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle \u03b8 and the parameter \u03b3.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02746748", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336111", 
            "issn": [
              "1827-613X"
            ], 
            "name": "Lettere al Nuovo Cimento (1971-1985)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "Einstein field equations", 
          "field equations", 
          "Einstein equations", 
          "solitonic solutions", 
          "nonvacuum solution", 
          "symmetric solutions", 
          "canonical form", 
          "parameter \u03b3", 
          "co-ordinate mapping", 
          "line source", 
          "equations", 
          "angle \u03b8", 
          "different values", 
          "certain conditions", 
          "solution", 
          "for\u03b3", 
          "\u03b3/2", 
          "withn", 
          "particular glass", 
          "vacuum", 
          "static", 
          "mapping", 
          "terms", 
          "axis", 
          "energy", 
          "glass", 
          "form", 
          "source", 
          "lower half", 
          "conditions", 
          "values", 
          "length", 
          "effect", 
          "half"
        ], 
        "name": "Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations", 
        "pagination": "497-502", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039149581"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02746748"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02746748", 
          "https://app.dimensions.ai/details/publication/pub.1039149581"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T21:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_213.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02746748"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      22 PREDICATES      61 URIs      52 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02746748 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Ndded470497d342a092a119d0d7bdb64b
    4 schema:citation sg:pub.10.1007/bf01877517
    5 schema:datePublished 1985-12
    6 schema:datePublishedReg 1985-12-01
    7 schema:description TheγA-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis forγ ± 0;γ ± 1. The co-ordinate transformationr → (λr)n,t →λn(1-λ)t withn = 1, 2,..., as λ → 0 is a mapping which maps the Weyl source with density γ/2 and length 2m into a semi-infinite line source with densityγ/2, located on the lower half of the z-axis. When terms of the orderλn(3-λ) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle θ and the parameter γ.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N36abaf33d90f446d950ddcbd45a148cc
    12 Nefd3024f6b394a50a169853554d70122
    13 sg:journal.1336111
    14 schema:keywords Einstein equations
    15 Einstein field equations
    16 angle θ
    17 axis
    18 canonical form
    19 certain conditions
    20 co-ordinate mapping
    21 conditions
    22 different values
    23 effect
    24 energy
    25 equations
    26 field equations
    27 form
    28 forγ
    29 glass
    30 half
    31 length
    32 line source
    33 lower half
    34 mapping
    35 nonvacuum solution
    36 parameter γ
    37 particular glass
    38 solitonic solutions
    39 solution
    40 source
    41 static
    42 symmetric solutions
    43 terms
    44 vacuum
    45 values
    46 withn
    47 γ/2
    48 schema:name Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations
    49 schema:pagination 497-502
    50 schema:productId N1fe77f43a4b645c2b053552d39698fd0
    51 N500597b6d0314a94bb3f7a30795005ce
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039149581
    53 https://doi.org/10.1007/bf02746748
    54 schema:sdDatePublished 2022-06-01T21:58
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N81e18224891a461d83aa1cb5cf8b602a
    57 schema:url https://doi.org/10.1007/bf02746748
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N1fe77f43a4b645c2b053552d39698fd0 schema:name doi
    62 schema:value 10.1007/bf02746748
    63 rdf:type schema:PropertyValue
    64 N36abaf33d90f446d950ddcbd45a148cc schema:volumeNumber 44
    65 rdf:type schema:PublicationVolume
    66 N500597b6d0314a94bb3f7a30795005ce schema:name dimensions_id
    67 schema:value pub.1039149581
    68 rdf:type schema:PropertyValue
    69 N81e18224891a461d83aa1cb5cf8b602a schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Ndded470497d342a092a119d0d7bdb64b rdf:first sg:person.015306374025.12
    72 rdf:rest rdf:nil
    73 Nefd3024f6b394a50a169853554d70122 schema:issueNumber 7
    74 rdf:type schema:PublicationIssue
    75 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Chemical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Physical Chemistry (incl. Structural)
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1336111 schema:issn 1827-613X
    82 schema:name Lettere al Nuovo Cimento (1971-1985)
    83 schema:publisher Springer Nature
    84 rdf:type schema:Periodical
    85 sg:person.015306374025.12 schema:affiliation grid-institutes:grid.4793.9
    86 schema:familyName Papadopoulos
    87 schema:givenName D.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306374025.12
    89 rdf:type schema:Person
    90 sg:pub.10.1007/bf01877517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042906989
    91 https://doi.org/10.1007/bf01877517
    92 rdf:type schema:CreativeWork
    93 grid-institutes:grid.4793.9 schema:alternateName Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece
    94 schema:name Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...