Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-12

AUTHORS

D. Papadopoulos

ABSTRACT

TheγA-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis forγ ± 0;γ ± 1. The co-ordinate transformationr → (λr)n,t →λn(1-λ)t withn = 1, 2,..., as λ → 0 is a mapping which maps the Weyl source with density γ/2 and length 2m into a semi-infinite line source with densityγ/2, located on the lower half of the z-axis. When terms of the orderλn(3-λ) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle θ and the parameter γ. More... »

PAGES

497-502

References to SciGraph publications

  • 1972-06. Black holes in general relativity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02746748

    DOI

    http://dx.doi.org/10.1007/bf02746748

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039149581


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Aristotle University of Thessaloniki", 
              "id": "https://www.grid.ac/institutes/grid.4793.9", 
              "name": [
                "Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Papadopoulos", 
            "givenName": "D.", 
            "id": "sg:person.015306374025.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306374025.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0370-2693(75)90673-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041973746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(75)90673-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041973746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042906989", 
              "https://doi.org/10.1007/bf01877517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042906989", 
              "https://doi.org/10.1007/bf01877517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1983.0075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046675057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.523031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058100051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.525384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058102403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/15/4/027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059066093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.24.320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060689238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.24.320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060689238"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-12", 
        "datePublishedReg": "1985-12-01", 
        "description": "The\u03b3A-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis for\u03b3 \u00b1 0;\u03b3 \u00b1 1. The co-ordinate transformationr \u2192 (\u03bbr)n,t \u2192\u03bbn(1-\u03bb)t withn = 1, 2,..., as \u03bb \u2192 0 is a mapping which maps the Weyl source with density \u03b3/2 and length 2m into a semi-infinite line source with density\u03b3/2, located on the lower half of the z-axis. When terms of the order\u03bbn(3-\u03bb) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle \u03b8 and the parameter \u03b3.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02746748", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336111", 
            "issn": [
              "1827-613X"
            ], 
            "name": "Lettere al Nuovo Cimento (1971-1985)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "name": "Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations", 
        "pagination": "497-502", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ba7cec27c4ef088a0c58727fd3f1cd17e029568df2d53bebadce6fc48d8addc4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02746748"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039149581"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02746748", 
          "https://app.dimensions.ai/details/publication/pub.1039149581"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000507.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02746748"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'


     

    This table displays all metadata directly associated to this object as RDF triples.

    82 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02746748 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Na6ad66429f1245e8ac255fba8ec297f5
    4 schema:citation sg:pub.10.1007/bf01877517
    5 https://doi.org/10.1016/0370-2693(75)90673-5
    6 https://doi.org/10.1063/1.523031
    7 https://doi.org/10.1063/1.525384
    8 https://doi.org/10.1088/0305-4470/15/4/027
    9 https://doi.org/10.1098/rspa.1983.0075
    10 https://doi.org/10.1103/physrevd.24.320
    11 schema:datePublished 1985-12
    12 schema:datePublishedReg 1985-12-01
    13 schema:description TheγA-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis forγ ± 0;γ ± 1. The co-ordinate transformationr → (λr)n,t →λn(1-λ)t withn = 1, 2,..., as λ → 0 is a mapping which maps the Weyl source with density γ/2 and length 2m into a semi-infinite line source with densityγ/2, located on the lower half of the z-axis. When terms of the orderλn(3-λ) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle θ and the parameter γ.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf Nca8280b996c246adbbe7e6ce69f658f9
    18 Ne264893f0a2945fbad25f9fb59eb92de
    19 sg:journal.1336111
    20 schema:name Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations
    21 schema:pagination 497-502
    22 schema:productId N2146d950454c49fe9dc66d1ac70d93a8
    23 N3e94646e66c547c987b513f4418f682c
    24 Na65cfcfd718a441aa43394a140f70310
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039149581
    26 https://doi.org/10.1007/bf02746748
    27 schema:sdDatePublished 2019-04-11T01:06
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N7580d45ff83a4104a6fb2765bfbbd6e8
    30 schema:url http://link.springer.com/10.1007%2FBF02746748
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N2146d950454c49fe9dc66d1ac70d93a8 schema:name dimensions_id
    35 schema:value pub.1039149581
    36 rdf:type schema:PropertyValue
    37 N3e94646e66c547c987b513f4418f682c schema:name readcube_id
    38 schema:value ba7cec27c4ef088a0c58727fd3f1cd17e029568df2d53bebadce6fc48d8addc4
    39 rdf:type schema:PropertyValue
    40 N7580d45ff83a4104a6fb2765bfbbd6e8 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 Na65cfcfd718a441aa43394a140f70310 schema:name doi
    43 schema:value 10.1007/bf02746748
    44 rdf:type schema:PropertyValue
    45 Na6ad66429f1245e8ac255fba8ec297f5 rdf:first sg:person.015306374025.12
    46 rdf:rest rdf:nil
    47 Nca8280b996c246adbbe7e6ce69f658f9 schema:volumeNumber 44
    48 rdf:type schema:PublicationVolume
    49 Ne264893f0a2945fbad25f9fb59eb92de schema:issueNumber 7
    50 rdf:type schema:PublicationIssue
    51 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Chemical Sciences
    53 rdf:type schema:DefinedTerm
    54 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Physical Chemistry (incl. Structural)
    56 rdf:type schema:DefinedTerm
    57 sg:journal.1336111 schema:issn 1827-613X
    58 schema:name Lettere al Nuovo Cimento (1971-1985)
    59 rdf:type schema:Periodical
    60 sg:person.015306374025.12 schema:affiliation https://www.grid.ac/institutes/grid.4793.9
    61 schema:familyName Papadopoulos
    62 schema:givenName D.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306374025.12
    64 rdf:type schema:Person
    65 sg:pub.10.1007/bf01877517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042906989
    66 https://doi.org/10.1007/bf01877517
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1016/0370-2693(75)90673-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041973746
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1063/1.523031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058100051
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1063/1.525384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058102403
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1088/0305-4470/15/4/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059066093
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1098/rspa.1983.0075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046675057
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1103/physrevd.24.320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060689238
    79 rdf:type schema:CreativeWork
    80 https://www.grid.ac/institutes/grid.4793.9 schema:alternateName Aristotle University of Thessaloniki
    81 schema:name Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece
    82 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...