Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-12

AUTHORS

D. Papadopoulos

ABSTRACT

TheγA-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis forγ ± 0;γ ± 1. The co-ordinate transformationr → (λr)n,t →λn(1-λ)t withn = 1, 2,..., as λ → 0 is a mapping which maps the Weyl source with density γ/2 and length 2m into a semi-infinite line source with densityγ/2, located on the lower half of the z-axis. When terms of the orderλn(3-λ) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle θ and the parameter γ. More... »

PAGES

497-502

References to SciGraph publications

  • 1972-06. Black holes in general relativity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02746748

    DOI

    http://dx.doi.org/10.1007/bf02746748

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039149581


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece", 
              "id": "http://www.grid.ac/institutes/grid.4793.9", 
              "name": [
                "Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Papadopoulos", 
            "givenName": "D.", 
            "id": "sg:person.015306374025.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306374025.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01877517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042906989", 
              "https://doi.org/10.1007/bf01877517"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-12", 
        "datePublishedReg": "1985-12-01", 
        "description": "The\u03b3A-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis for\u03b3 \u00b1 0;\u03b3 \u00b1 1. The co-ordinate transformationr \u2192 (\u03bbr)n,t \u2192\u03bbn(1-\u03bb)t withn = 1, 2,..., as \u03bb \u2192 0 is a mapping which maps the Weyl source with density \u03b3/2 and length 2m into a semi-infinite line source with density\u03b3/2, located on the lower half of the z-axis. When terms of the order\u03bbn(3-\u03bb) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle \u03b8 and the parameter \u03b3.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02746748", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336111", 
            "issn": [
              "1827-613X"
            ], 
            "name": "Lettere al Nuovo Cimento (1971-1985)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "Einstein field equations", 
          "field equations", 
          "Einstein equations", 
          "solitonic solutions", 
          "symmetric solutions", 
          "nonvacuum solution", 
          "canonical form", 
          "parameter \u03b3", 
          "co-ordinate mapping", 
          "line source", 
          "equations", 
          "angle \u03b8", 
          "different values", 
          "certain conditions", 
          "z-axis", 
          "solution", 
          "for\u03b3", 
          "\u03b3/2", 
          "withn", 
          "particular glass", 
          "vacuum", 
          "static", 
          "mapping", 
          "terms", 
          "energy", 
          "glass", 
          "form", 
          "lower half", 
          "source", 
          "conditions", 
          "values", 
          "length", 
          "effect", 
          "half"
        ], 
        "name": "Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations", 
        "pagination": "497-502", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039149581"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02746748"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02746748", 
          "https://app.dimensions.ai/details/publication/pub.1039149581"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_202.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02746748"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02746748'


     

    This table displays all metadata directly associated to this object as RDF triples.

    94 TRIPLES      21 PREDICATES      60 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02746748 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N6004ec5091e34d7c800747c7f760e4bc
    4 schema:citation sg:pub.10.1007/bf01877517
    5 schema:datePublished 1985-12
    6 schema:datePublishedReg 1985-12-01
    7 schema:description TheγA-metric in a canonical form is a solitonic solution to the Einstein field equations in vacuum and represents a semi-infinite Weyl source located on the lower half on the z-axis forγ ± 0;γ ± 1. The co-ordinate transformationr → (λr)n,t →λn(1-λ)t withn = 1, 2,..., as λ → 0 is a mapping which maps the Weyl source with density γ/2 and length 2m into a semi-infinite line source with densityγ/2, located on the lower half of the z-axis. When terms of the orderλn(3-λ) are kept, a nonvacuum solution is taken. It satisfies certain conditions of energy for different values of the angle θ and the parameter γ.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N8247ebd9f9ef44e3961d7b7f0c518a07
    11 N9ce1140cd0354dc6b8ca91cdc3ade6e4
    12 sg:journal.1336111
    13 schema:keywords Einstein equations
    14 Einstein field equations
    15 angle θ
    16 canonical form
    17 certain conditions
    18 co-ordinate mapping
    19 conditions
    20 different values
    21 effect
    22 energy
    23 equations
    24 field equations
    25 form
    26 forγ
    27 glass
    28 half
    29 length
    30 line source
    31 lower half
    32 mapping
    33 nonvacuum solution
    34 parameter γ
    35 particular glass
    36 solitonic solutions
    37 solution
    38 source
    39 static
    40 symmetric solutions
    41 terms
    42 vacuum
    43 values
    44 withn
    45 z-axis
    46 γ/2
    47 schema:name Effects of a co-ordinate mapping on a particular glass of static, axially symmetric solutions to the Einstein equations
    48 schema:pagination 497-502
    49 schema:productId N1232ab7dc6c042fab7aa269479fc3477
    50 N994b734399a84139a66a5b6416f04225
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039149581
    52 https://doi.org/10.1007/bf02746748
    53 schema:sdDatePublished 2022-08-04T16:51
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N3dba466ee7fd493291e122779ed0ddf2
    56 schema:url https://doi.org/10.1007/bf02746748
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N1232ab7dc6c042fab7aa269479fc3477 schema:name dimensions_id
    61 schema:value pub.1039149581
    62 rdf:type schema:PropertyValue
    63 N3dba466ee7fd493291e122779ed0ddf2 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N6004ec5091e34d7c800747c7f760e4bc rdf:first sg:person.015306374025.12
    66 rdf:rest rdf:nil
    67 N8247ebd9f9ef44e3961d7b7f0c518a07 schema:issueNumber 7
    68 rdf:type schema:PublicationIssue
    69 N994b734399a84139a66a5b6416f04225 schema:name doi
    70 schema:value 10.1007/bf02746748
    71 rdf:type schema:PropertyValue
    72 N9ce1140cd0354dc6b8ca91cdc3ade6e4 schema:volumeNumber 44
    73 rdf:type schema:PublicationVolume
    74 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Chemical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Physical Chemistry (incl. Structural)
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1336111 schema:issn 1827-613X
    81 schema:name Lettere al Nuovo Cimento (1971-1985)
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.015306374025.12 schema:affiliation grid-institutes:grid.4793.9
    85 schema:familyName Papadopoulos
    86 schema:givenName D.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306374025.12
    88 rdf:type schema:Person
    89 sg:pub.10.1007/bf01877517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042906989
    90 https://doi.org/10.1007/bf01877517
    91 rdf:type schema:CreativeWork
    92 grid-institutes:grid.4793.9 schema:alternateName Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece
    93 schema:name Department of Astronomy, University of Thessaloniki, Tessaloniki, Greece
    94 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...