Quasi-classical ground-state energies for equally mixed vectorial and scalar attractive power potentials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-12

AUTHORS

E. Papp

ABSTRACT

Quasi-classical evaluations for the ground-state energies of the Dirac Hamiltonian with equally mixed vectorial and scalar attractive power potentialsVs(r) = Vv(r) = Vn(r) have been established. Such calculations proceed forn⩽⩽2, whereVn(r) = Cn/rn andnCn < 0. The present evaluations reproduce exactly the actual Coulomb results insofar as the underlying phase-space quantum equals unity. It turns out that the onset of the scalar potentials enhance the validity degrees characterizing the stability behaviour of the Dirac Hamiltonian with vectorial power potentials. More... »

PAGES

433-436

References to SciGraph publications

  • 1983-08. Dispersion approach to the quantum-mechanical stability in LETTERE AL NUOVO CIMENTO (1971-1985)
  • 1984-09. Regularization of divergent necessary conditions for negative-energy bound states in LETTERE AL NUOVO CIMENTO (1971-1985)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02746735

    DOI

    http://dx.doi.org/10.1007/bf02746735

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026326026


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, University of Munich, Theresienstr. 37, D-8000, M\u00fcnchen-2", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Theoretical Physics, University of Munich, Theresienstr. 37, D-8000, M\u00fcnchen-2"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Papp", 
            "givenName": "E.", 
            "id": "sg:person.014206044343.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014206044343.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02818123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002340235", 
              "https://doi.org/10.1007/bf02818123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02747518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038609364", 
              "https://doi.org/10.1007/bf02747518"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-12", 
        "datePublishedReg": "1985-12-01", 
        "description": "Quasi-classical evaluations for the ground-state energies of the Dirac Hamiltonian with equally mixed vectorial and scalar attractive power potentialsVs(r) = Vv(r) = Vn(r) have been established. Such calculations proceed forn\u2a7d\u2a7d2, whereVn(r) = Cn/rn andnCn < 0. The present evaluations reproduce exactly the actual Coulomb results insofar as the underlying phase-space quantum equals unity. It turns out that the onset of the scalar potentials enhance the validity degrees characterizing the stability behaviour of the Dirac Hamiltonian with vectorial power potentials.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02746735", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336111", 
            "issn": [
              "1827-613X"
            ], 
            "name": "Lettere al Nuovo Cimento (1971-1985)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "keywords": [
          "ground-state energy", 
          "Dirac Hamiltonian", 
          "Coulomb results", 
          "scalar potential", 
          "such calculations", 
          "Hamiltonian", 
          "energy", 
          "quantum", 
          "present evaluation", 
          "calculations", 
          "potential", 
          "power potential", 
          "power", 
          "unity", 
          "validity degree", 
          "stability behavior", 
          "behavior", 
          "results", 
          "attractive power", 
          "degree", 
          "onset", 
          "evaluation"
        ], 
        "name": "Quasi-classical ground-state energies for equally mixed vectorial and scalar attractive power potentials", 
        "pagination": "433-436", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026326026"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02746735"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02746735", 
          "https://app.dimensions.ai/details/publication/pub.1026326026"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T21:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_184.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02746735"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02746735'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02746735'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02746735'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02746735'


     

    This table displays all metadata directly associated to this object as RDF triples.

    87 TRIPLES      22 PREDICATES      50 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02746735 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N18d365249acc4505b5d6e451e13d3f95
    4 schema:citation sg:pub.10.1007/bf02747518
    5 sg:pub.10.1007/bf02818123
    6 schema:datePublished 1985-12
    7 schema:datePublishedReg 1985-12-01
    8 schema:description Quasi-classical evaluations for the ground-state energies of the Dirac Hamiltonian with equally mixed vectorial and scalar attractive power potentialsVs(r) = Vv(r) = Vn(r) have been established. Such calculations proceed forn⩽⩽2, whereVn(r) = Cn/rn andnCn < 0. The present evaluations reproduce exactly the actual Coulomb results insofar as the underlying phase-space quantum equals unity. It turns out that the onset of the scalar potentials enhance the validity degrees characterizing the stability behaviour of the Dirac Hamiltonian with vectorial power potentials.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N41a9e038348a416493bfdad708621254
    13 N76518d204f764646ba22759236fa391e
    14 sg:journal.1336111
    15 schema:keywords Coulomb results
    16 Dirac Hamiltonian
    17 Hamiltonian
    18 attractive power
    19 behavior
    20 calculations
    21 degree
    22 energy
    23 evaluation
    24 ground-state energy
    25 onset
    26 potential
    27 power
    28 power potential
    29 present evaluation
    30 quantum
    31 results
    32 scalar potential
    33 stability behavior
    34 such calculations
    35 unity
    36 validity degree
    37 schema:name Quasi-classical ground-state energies for equally mixed vectorial and scalar attractive power potentials
    38 schema:pagination 433-436
    39 schema:productId N8fe8e2cd769d4967bc27dfa0d910a746
    40 Nd74cba4fc016412cba998e584936f88e
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026326026
    42 https://doi.org/10.1007/bf02746735
    43 schema:sdDatePublished 2022-06-01T21:58
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N2a6442b773fb4751b0d4df2e11385736
    46 schema:url https://doi.org/10.1007/bf02746735
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N18d365249acc4505b5d6e451e13d3f95 rdf:first sg:person.014206044343.42
    51 rdf:rest rdf:nil
    52 N2a6442b773fb4751b0d4df2e11385736 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N41a9e038348a416493bfdad708621254 schema:volumeNumber 44
    55 rdf:type schema:PublicationVolume
    56 N76518d204f764646ba22759236fa391e schema:issueNumber 7
    57 rdf:type schema:PublicationIssue
    58 N8fe8e2cd769d4967bc27dfa0d910a746 schema:name doi
    59 schema:value 10.1007/bf02746735
    60 rdf:type schema:PropertyValue
    61 Nd74cba4fc016412cba998e584936f88e schema:name dimensions_id
    62 schema:value pub.1026326026
    63 rdf:type schema:PropertyValue
    64 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Physical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1336111 schema:issn 1827-613X
    71 schema:name Lettere al Nuovo Cimento (1971-1985)
    72 schema:publisher Springer Nature
    73 rdf:type schema:Periodical
    74 sg:person.014206044343.42 schema:affiliation grid-institutes:None
    75 schema:familyName Papp
    76 schema:givenName E.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014206044343.42
    78 rdf:type schema:Person
    79 sg:pub.10.1007/bf02747518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038609364
    80 https://doi.org/10.1007/bf02747518
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf02818123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002340235
    83 https://doi.org/10.1007/bf02818123
    84 rdf:type schema:CreativeWork
    85 grid-institutes:None schema:alternateName Theoretical Physics, University of Munich, Theresienstr. 37, D-8000, München-2
    86 schema:name Theoretical Physics, University of Munich, Theresienstr. 37, D-8000, München-2
    87 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...