Unitary Padé approximants in strong coupling field theory and application to the calculation of the ρ- and f0-meson regge trajectories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1968-03

AUTHORS

D. Bessis, M. Pusteria

ABSTRACT

We show that the unitary Padé approximants, which are well suited for absorbing the essential singularities atg=0 in Lagrangian field theory, have in the case of a LagrangianL1=−g/4(ϕαϕα)2, where ϕα is the π field, the following nice features: 1) they are built up from the perturbativeS-matrix expansion, coinciding with it up to fourth order in our case; 2) they are rigorously unitary (elastic) and contain also inelastic unitarity (4π) (the modulus of the diagonalizedS-matrix is smaller than 1 all over the inelastic cut); 3) they have correct analytic properties in the energy variable; 4) there are no difficulties in extending them to complex values of the angular momentum; 5) they satisfy the right requirements between the number of inelastic channels open and the precision required on the crossing symmetry; 6) the complete equivalence between unitary Padé approximants and the approximations derived from the Lippmann-Schwinger variational principle is proved at all orders (using the Cini-Fubini «ansatz»). We have computed the complete fourth-order renormalized, including 2π and 4π contributions both in the direct and crossed channels. The main results we obtain are the mass of the ρ and f0 mesons and their Regge trajectories within 15% in agreement with experiment, in terms of only one parameter, the value ofg (∼6). The imaginary parts of Regge trajectories are found instable, so the widths are sensitive to the 6π and forces: in our model, the ρ and f0 mesons appear as narrow objects. More... »

PAGES

243-294

References to SciGraph publications

  • 1954-02. Non perturbation treatment of scattering in quantum field theory in IL NUOVO CIMENTO (1943-1954)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02743788

    DOI

    http://dx.doi.org/10.1007/bf02743788

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012277282


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "European Organization for Nuclear Research", 
              "id": "https://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bessis", 
            "givenName": "D.", 
            "id": "sg:person.015337236441.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337236441.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Organization for Nuclear Research", 
              "id": "https://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pusteria", 
            "givenName": "M.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02782911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024896135", 
              "https://doi.org/10.1007/bf02782911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02782911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024896135", 
              "https://doi.org/10.1007/bf02782911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1703931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057773873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1703997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057773939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1704840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057774509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.112.1344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060420914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.112.1344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060420914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.119.467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060423098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.119.467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060423098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.137.b155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060430202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.137.b155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060430202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.140.b914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.140.b914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.142.1245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060432210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.142.1245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060432210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.79.469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060456553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.79.469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060456553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.85.631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060458944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.85.631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060458944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.85.920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060459022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.85.920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060459022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.5.580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.5.580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788299"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1968-03", 
        "datePublishedReg": "1968-03-01", 
        "description": "We show that the unitary Pad\u00e9 approximants, which are well suited for absorbing the essential singularities atg=0 in Lagrangian field theory, have in the case of a LagrangianL1=\u2212g/4(\u03d5\u03b1\u03d5\u03b1)2, where \u03d5\u03b1 is the \u03c0 field, the following nice features: 1) they are built up from the perturbativeS-matrix expansion, coinciding with it up to fourth order in our case; 2) they are rigorously unitary (elastic) and contain also inelastic unitarity (4\u03c0) (the modulus of the diagonalizedS-matrix is smaller than 1 all over the inelastic cut); 3) they have correct analytic properties in the energy variable; 4) there are no difficulties in extending them to complex values of the angular momentum; 5) they satisfy the right requirements between the number of inelastic channels open and the precision required on the crossing symmetry; 6) the complete equivalence between unitary Pad\u00e9 approximants and the approximations derived from the Lippmann-Schwinger variational principle is proved at all orders (using the Cini-Fubini \u00abansatz\u00bb). We have computed the complete fourth-order renormalized, including 2\u03c0 and 4\u03c0 contributions both in the direct and crossed channels. The main results we obtain are the mass of the \u03c1 and f0 mesons and their Regge trajectories within 15% in agreement with experiment, in terms of only one parameter, the value ofg (\u223c6). The imaginary parts of Regge trajectories are found instable, so the widths are sensitive to the 6\u03c0 and forces: in our model, the \u03c1 and f0 mesons appear as narrow objects.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02743788", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1328730", 
            "issn": [
              "0369-3546", 
              "1826-9869"
            ], 
            "name": "Il Nuovo Cimento A (1965-1970)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "name": "Unitary Pad\u00e9 approximants in strong coupling field theory and application to the calculation of the \u03c1- and f0-meson regge trajectories", 
        "pagination": "243-294", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3a7e36efa5918c626fc264253b9fd83c61b05c58180054162146be6f68efe326"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02743788"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012277282"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02743788", 
          "https://app.dimensions.ai/details/publication/pub.1012277282"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02743788"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02743788'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02743788'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02743788'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02743788'


     

    This table displays all metadata directly associated to this object as RDF triples.

    107 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02743788 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N7eb0d30ae6a44c33af412e439e4ff0a0
    4 schema:citation sg:pub.10.1007/bf02782911
    5 https://doi.org/10.1063/1.1703931
    6 https://doi.org/10.1063/1.1703997
    7 https://doi.org/10.1063/1.1704840
    8 https://doi.org/10.1103/physrev.112.1344
    9 https://doi.org/10.1103/physrev.119.467
    10 https://doi.org/10.1103/physrev.137.b155
    11 https://doi.org/10.1103/physrev.140.b914
    12 https://doi.org/10.1103/physrev.142.1245
    13 https://doi.org/10.1103/physrev.79.469
    14 https://doi.org/10.1103/physrev.85.631
    15 https://doi.org/10.1103/physrev.85.920
    16 https://doi.org/10.1103/physrevlett.5.580
    17 schema:datePublished 1968-03
    18 schema:datePublishedReg 1968-03-01
    19 schema:description We show that the unitary Padé approximants, which are well suited for absorbing the essential singularities atg=0 in Lagrangian field theory, have in the case of a LagrangianL1=−g/4(ϕαϕα)2, where ϕα is the π field, the following nice features: 1) they are built up from the perturbativeS-matrix expansion, coinciding with it up to fourth order in our case; 2) they are rigorously unitary (elastic) and contain also inelastic unitarity (4π) (the modulus of the diagonalizedS-matrix is smaller than 1 all over the inelastic cut); 3) they have correct analytic properties in the energy variable; 4) there are no difficulties in extending them to complex values of the angular momentum; 5) they satisfy the right requirements between the number of inelastic channels open and the precision required on the crossing symmetry; 6) the complete equivalence between unitary Padé approximants and the approximations derived from the Lippmann-Schwinger variational principle is proved at all orders (using the Cini-Fubini «ansatz»). We have computed the complete fourth-order renormalized, including 2π and 4π contributions both in the direct and crossed channels. The main results we obtain are the mass of the ρ and f0 mesons and their Regge trajectories within 15% in agreement with experiment, in terms of only one parameter, the value ofg (∼6). The imaginary parts of Regge trajectories are found instable, so the widths are sensitive to the 6π and forces: in our model, the ρ and f0 mesons appear as narrow objects.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N10c3bb0fae51483d8f3e2443ec393c0a
    24 N4c0a4f6c07ba4081b07462f1024773ba
    25 sg:journal.1328730
    26 schema:name Unitary Padé approximants in strong coupling field theory and application to the calculation of the ρ- and f0-meson regge trajectories
    27 schema:pagination 243-294
    28 schema:productId N981d3fbb993a4b28ac97a385d2b099ea
    29 Ne0aaa775708541c9b223240ec167a72e
    30 Nef5c38bd00fd4ec6a96eff6d5f0c5611
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012277282
    32 https://doi.org/10.1007/bf02743788
    33 schema:sdDatePublished 2019-04-11T13:29
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N5e9e5ba049014c92a5df12239fc2f9b6
    36 schema:url http://link.springer.com/10.1007%2FBF02743788
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N10c3bb0fae51483d8f3e2443ec393c0a schema:issueNumber 2
    41 rdf:type schema:PublicationIssue
    42 N4c0a4f6c07ba4081b07462f1024773ba schema:volumeNumber 54
    43 rdf:type schema:PublicationVolume
    44 N5b10a69d40634187b8652b55c4c8f36d rdf:first Nbfa8dc78977a49f7bd699a4cfd7f13b1
    45 rdf:rest rdf:nil
    46 N5e9e5ba049014c92a5df12239fc2f9b6 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N7eb0d30ae6a44c33af412e439e4ff0a0 rdf:first sg:person.015337236441.57
    49 rdf:rest N5b10a69d40634187b8652b55c4c8f36d
    50 N981d3fbb993a4b28ac97a385d2b099ea schema:name readcube_id
    51 schema:value 3a7e36efa5918c626fc264253b9fd83c61b05c58180054162146be6f68efe326
    52 rdf:type schema:PropertyValue
    53 Nbfa8dc78977a49f7bd699a4cfd7f13b1 schema:affiliation https://www.grid.ac/institutes/grid.9132.9
    54 schema:familyName Pusteria
    55 schema:givenName M.
    56 rdf:type schema:Person
    57 Ne0aaa775708541c9b223240ec167a72e schema:name doi
    58 schema:value 10.1007/bf02743788
    59 rdf:type schema:PropertyValue
    60 Nef5c38bd00fd4ec6a96eff6d5f0c5611 schema:name dimensions_id
    61 schema:value pub.1012277282
    62 rdf:type schema:PropertyValue
    63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Mathematical Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Pure Mathematics
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1328730 schema:issn 0369-3546
    70 1826-9869
    71 schema:name Il Nuovo Cimento A (1965-1970)
    72 rdf:type schema:Periodical
    73 sg:person.015337236441.57 schema:affiliation https://www.grid.ac/institutes/grid.9132.9
    74 schema:familyName Bessis
    75 schema:givenName D.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337236441.57
    77 rdf:type schema:Person
    78 sg:pub.10.1007/bf02782911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024896135
    79 https://doi.org/10.1007/bf02782911
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1063/1.1703931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773873
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1063/1.1703997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773939
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1063/1.1704840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774509
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1103/physrev.112.1344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060420914
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1103/physrev.119.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423098
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1103/physrev.137.b155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060430202
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1103/physrev.140.b914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431927
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physrev.142.1245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060432210
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/physrev.79.469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060456553
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/physrev.85.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458944
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1103/physrev.85.920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060459022
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1103/physrevlett.5.580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788299
    104 rdf:type schema:CreativeWork
    105 https://www.grid.ac/institutes/grid.9132.9 schema:alternateName European Organization for Nuclear Research
    106 schema:name CERN, Geneva
    107 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...