Stability boundary and diffusion in 2D maps describing a magnetic lattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-11

AUTHORS

A. Bazzani, G. Servizi, G. Turchetti, K. Hizanidis, C. Polymilis

ABSTRACT

We consider the non-linear map describing the basic cell of a circular accelerator. The dependence of the stability basin on the non-linearity is investigated by considering increasing multipolar orders. A model for the diffusion induced by a periodic ripple is derived; for a quadratic non-linearity it is the Henon map with a modulated linear frequency. For slow modulation the diffusion process is conveniently described by the adiabatic theory, which gives a diffusion time proportional to the cube of the modulation period. Unlike the case of noise modulation, the diffusion takes place in the bounded region, near a resonance, swept by the separatrices. More... »

PAGES

1369-1384

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02742510

DOI

http://dx.doi.org/10.1007/bf02742510

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042932589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INFN, Sezione di Bologna, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470193.8", 
          "name": [
            "Dipartimento di Matematica, Universita di Bologna, Bologna, Italy", 
            "INFN, Sezione di Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazzani", 
        "givenName": "A.", 
        "id": "sg:person.01236473147.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236473147.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN, Sezione di Bologna, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470193.8", 
          "name": [
            "Dipartimento di Matematica, Universita di Bologna, Bologna, Italy", 
            "INFN, Sezione di Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Servizi", 
        "givenName": "G.", 
        "id": "sg:person.016106300675.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106300675.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN, Sezione di Bologna, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470193.8", 
          "name": [
            "Dipartimento di Fisica, Universita di Bologna, Bologna, Italy", 
            "INFN, Sezione di Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turchetti", 
        "givenName": "G.", 
        "id": "sg:person.010204451175.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204451175.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, 15773, Zografos, Athens, Greece", 
          "id": "http://www.grid.ac/institutes/grid.4241.3", 
          "name": [
            "Department of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, 15773, Zografos, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hizanidis", 
        "givenName": "K.", 
        "id": "sg:person.01022324022.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022324022.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Athens Panepistimiopolis, 15784, Zografos, Athens, Greece", 
          "id": "http://www.grid.ac/institutes/grid.5216.0", 
          "name": [
            "Department of Physics, University of Athens Panepistimiopolis, 15784, Zografos, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polymilis", 
        "givenName": "C.", 
        "id": "sg:person.0761077654.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761077654.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996-11", 
    "datePublishedReg": "1996-11-01", 
    "description": "We consider the non-linear map describing the basic cell of a circular accelerator. The dependence of the stability basin on the non-linearity is investigated by considering increasing multipolar orders. A model for the diffusion induced by a periodic ripple is derived; for a quadratic non-linearity it is the Henon map with a modulated linear frequency. For slow modulation the diffusion process is conveniently described by the adiabatic theory, which gives a diffusion time proportional to the cube of the modulation period. Unlike the case of noise modulation, the diffusion takes place in the bounded region, near a resonance, swept by the separatrices.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02742510", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336108", 
        "issn": [
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1971-1996)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "111"
      }
    ], 
    "keywords": [
      "circular accelerators", 
      "adiabatic theory", 
      "magnetic lattice", 
      "multipolar order", 
      "periodic ripples", 
      "modulation period", 
      "slow modulation", 
      "diffusion time", 
      "noise modulation", 
      "diffusion process", 
      "accelerator", 
      "linear frequency", 
      "separatrix", 
      "diffusion", 
      "resonance", 
      "lattice", 
      "modulation", 
      "dependence", 
      "basic cell", 
      "ripple", 
      "stability basin", 
      "theory", 
      "Henon map", 
      "frequency", 
      "region", 
      "stability", 
      "non-linear map", 
      "maps", 
      "cube", 
      "order", 
      "process", 
      "model", 
      "time", 
      "basin", 
      "cases", 
      "place", 
      "cells", 
      "period"
    ], 
    "name": "Stability boundary and diffusion in 2D maps describing a magnetic lattice", 
    "pagination": "1369-1384", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042932589"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02742510"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02742510", 
      "https://app.dimensions.ai/details/publication/pub.1042932589"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_305.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02742510"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02742510'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02742510'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02742510'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02742510'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      64 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02742510 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N80de3e8e540045debc5cb6cdf6016e13
4 schema:datePublished 1996-11
5 schema:datePublishedReg 1996-11-01
6 schema:description We consider the non-linear map describing the basic cell of a circular accelerator. The dependence of the stability basin on the non-linearity is investigated by considering increasing multipolar orders. A model for the diffusion induced by a periodic ripple is derived; for a quadratic non-linearity it is the Henon map with a modulated linear frequency. For slow modulation the diffusion process is conveniently described by the adiabatic theory, which gives a diffusion time proportional to the cube of the modulation period. Unlike the case of noise modulation, the diffusion takes place in the bounded region, near a resonance, swept by the separatrices.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N27e4d39e0f5e416ca2db2e870e341970
11 Ne215956212ff4c258c5dfbb52615c449
12 sg:journal.1336108
13 schema:keywords Henon map
14 accelerator
15 adiabatic theory
16 basic cell
17 basin
18 cases
19 cells
20 circular accelerators
21 cube
22 dependence
23 diffusion
24 diffusion process
25 diffusion time
26 frequency
27 lattice
28 linear frequency
29 magnetic lattice
30 maps
31 model
32 modulation
33 modulation period
34 multipolar order
35 noise modulation
36 non-linear map
37 order
38 period
39 periodic ripples
40 place
41 process
42 region
43 resonance
44 ripple
45 separatrix
46 slow modulation
47 stability
48 stability basin
49 theory
50 time
51 schema:name Stability boundary and diffusion in 2D maps describing a magnetic lattice
52 schema:pagination 1369-1384
53 schema:productId N5d07f390e8e54c2d9517362f78263f04
54 Ne5c31b7c6f2446d9bf52f72f54791b61
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042932589
56 https://doi.org/10.1007/bf02742510
57 schema:sdDatePublished 2022-06-01T22:02
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N30256b89b81f4cd5af690bf9a0aa8830
60 schema:url https://doi.org/10.1007/bf02742510
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N27e4d39e0f5e416ca2db2e870e341970 schema:volumeNumber 111
65 rdf:type schema:PublicationVolume
66 N30256b89b81f4cd5af690bf9a0aa8830 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N5d07f390e8e54c2d9517362f78263f04 schema:name dimensions_id
69 schema:value pub.1042932589
70 rdf:type schema:PropertyValue
71 N80de3e8e540045debc5cb6cdf6016e13 rdf:first sg:person.01236473147.17
72 rdf:rest Nd8fac86a020448bcbc45c1fdc5971da8
73 N8f238b2a86624576b5525395fd315be9 rdf:first sg:person.01022324022.10
74 rdf:rest Nef5d110e161c4effa2e57ac65a824039
75 Nd8fac86a020448bcbc45c1fdc5971da8 rdf:first sg:person.016106300675.78
76 rdf:rest Nddd733c98ce24536b1f0871fc417aa56
77 Nddd733c98ce24536b1f0871fc417aa56 rdf:first sg:person.010204451175.01
78 rdf:rest N8f238b2a86624576b5525395fd315be9
79 Ne215956212ff4c258c5dfbb52615c449 schema:issueNumber 11
80 rdf:type schema:PublicationIssue
81 Ne5c31b7c6f2446d9bf52f72f54791b61 schema:name doi
82 schema:value 10.1007/bf02742510
83 rdf:type schema:PropertyValue
84 Nef5d110e161c4effa2e57ac65a824039 rdf:first sg:person.0761077654.48
85 rdf:rest rdf:nil
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
90 schema:name Pure Mathematics
91 rdf:type schema:DefinedTerm
92 sg:journal.1336108 schema:issn 1826-9877
93 schema:name Il Nuovo Cimento B (1971-1996)
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.010204451175.01 schema:affiliation grid-institutes:grid.470193.8
97 schema:familyName Turchetti
98 schema:givenName G.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204451175.01
100 rdf:type schema:Person
101 sg:person.01022324022.10 schema:affiliation grid-institutes:grid.4241.3
102 schema:familyName Hizanidis
103 schema:givenName K.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022324022.10
105 rdf:type schema:Person
106 sg:person.01236473147.17 schema:affiliation grid-institutes:grid.470193.8
107 schema:familyName Bazzani
108 schema:givenName A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236473147.17
110 rdf:type schema:Person
111 sg:person.016106300675.78 schema:affiliation grid-institutes:grid.470193.8
112 schema:familyName Servizi
113 schema:givenName G.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106300675.78
115 rdf:type schema:Person
116 sg:person.0761077654.48 schema:affiliation grid-institutes:grid.5216.0
117 schema:familyName Polymilis
118 schema:givenName C.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761077654.48
120 rdf:type schema:Person
121 grid-institutes:grid.4241.3 schema:alternateName Department of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, 15773, Zografos, Athens, Greece
122 schema:name Department of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, 15773, Zografos, Athens, Greece
123 rdf:type schema:Organization
124 grid-institutes:grid.470193.8 schema:alternateName INFN, Sezione di Bologna, Bologna, Italy
125 schema:name Dipartimento di Fisica, Universita di Bologna, Bologna, Italy
126 Dipartimento di Matematica, Universita di Bologna, Bologna, Italy
127 INFN, Sezione di Bologna, Bologna, Italy
128 rdf:type schema:Organization
129 grid-institutes:grid.5216.0 schema:alternateName Department of Physics, University of Athens Panepistimiopolis, 15784, Zografos, Athens, Greece
130 schema:name Department of Physics, University of Athens Panepistimiopolis, 15784, Zografos, Athens, Greece
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...