1996-11
AUTHORS ABSTRACTWe present a new approach to quantum gravity whose basic idea is a confluence of four elements: 1) the possibility of working with manifolds on three different levels of abstraction, which are i) a general differentiable manifold; ii) an affmely connected manifold; iii) a manifold with a metric structure; 2) Carmeli’s SL(2, C) gauge theory formulation of General Relativity, which implies the possibility that the quantities that need to be quantized are spinor potential and/or fields, rather than the components of the metric tensor; 3) the formulation of Carmeli’s theory on affinely connected, rather than metric space-time; and, finally, 4) the discovery of the possibility to have a Lagrangian formulation of Carmeli’s theory on general differentiable manifolds. In the suggested approach, then, the quantized quantities are not the components of the metric tensor but quantities that arise naturally in the SL(2, C) gauge theory, and the problem of the absence of a space-time with a given structure as a background does not arise, because the quantization is based on a Lagrangian defined over a general differentiable manifold. More... »
PAGES1405-1414
http://scigraph.springernature.com/pub.10.1007/bf02741479
DOIhttp://dx.doi.org/10.1007/bf02741479
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1028486691
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Center for Theoretical Physics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel",
"id": "http://www.grid.ac/institutes/grid.7489.2",
"name": [
"Center for Theoretical Physics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel"
],
"type": "Organization"
},
"familyName": "Carmeli",
"givenName": "M.",
"id": "sg:person.015075613351.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075613351.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics and Astronomy, Colgate University Hamilton, 13346, NY, USA",
"id": "http://www.grid.ac/institutes/grid.254361.7",
"name": [
"Department of Physics and Astronomy, Colgate University Hamilton, 13346, NY, USA"
],
"type": "Organization"
},
"familyName": "Malin",
"givenName": "S.",
"id": "sg:person.011705574127.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011705574127.94"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02710875",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035257234",
"https://doi.org/10.1007/bf02710875"
],
"type": "CreativeWork"
}
],
"datePublished": "1996-11",
"datePublishedReg": "1996-11-01",
"description": "We present a new approach to quantum gravity whose basic idea is a confluence of four elements: 1) the possibility of working with manifolds on three different levels of abstraction, which are i) a general differentiable manifold; ii) an affmely connected manifold; iii) a manifold with a metric structure; 2) Carmeli\u2019s SL(2, C) gauge theory formulation of General Relativity, which implies the possibility that the quantities that need to be quantized are spinor potential and/or fields, rather than the components of the metric tensor; 3) the formulation of Carmeli\u2019s theory on affinely connected, rather than metric space-time; and, finally, 4) the discovery of the possibility to have a Lagrangian formulation of Carmeli\u2019s theory on general differentiable manifolds. In the suggested approach, then, the quantized quantities are not the components of the metric tensor but quantities that arise naturally in the SL(2, C) gauge theory, and the problem of the absence of a space-time with a given structure as a background does not arise, because the quantization is based on a Lagrangian defined over a general differentiable manifold.",
"genre": "article",
"id": "sg:pub.10.1007/bf02741479",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1336108",
"issn": [
"1826-9877"
],
"name": "Il Nuovo Cimento B (1971-1996)",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "111"
}
],
"keywords": [
"general differentiable manifolds",
"differentiable manifold",
"metric tensor",
"gauge theory formulation",
"quantum gravity",
"quantized quantity",
"general relativity",
"gauge theory",
"Lagrangian formulation",
"metric structure",
"theory formulation",
"manifold",
"connected manifolds",
"basic idea",
"theory",
"suggested approach",
"tensor",
"gravity",
"formulation",
"spinors",
"Lagrangian",
"new approach",
"relativity",
"Carmeli",
"quantization",
"quantity",
"problem",
"approach",
"field",
"structure",
"possibility",
"idea",
"new perspective",
"components",
"elements",
"different levels",
"abstraction",
"background",
"discovery",
"perspective",
"absence",
"confluence",
"levels"
],
"name": "A new perspective on quantum gravity",
"pagination": "1405-1414",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028486691"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02741479"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02741479",
"https://app.dimensions.ai/details/publication/pub.1028486691"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_264.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02741479"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02741479'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02741479'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02741479'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02741479'
This table displays all metadata directly associated to this object as RDF triples.
113 TRIPLES
21 PREDICATES
69 URIs
60 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02741479 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Nf13c7726626b4832af3ea0b12b4e6936 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02710875 |
5 | ″ | schema:datePublished | 1996-11 |
6 | ″ | schema:datePublishedReg | 1996-11-01 |
7 | ″ | schema:description | We present a new approach to quantum gravity whose basic idea is a confluence of four elements: 1) the possibility of working with manifolds on three different levels of abstraction, which are i) a general differentiable manifold; ii) an affmely connected manifold; iii) a manifold with a metric structure; 2) Carmeli’s SL(2, C) gauge theory formulation of General Relativity, which implies the possibility that the quantities that need to be quantized are spinor potential and/or fields, rather than the components of the metric tensor; 3) the formulation of Carmeli’s theory on affinely connected, rather than metric space-time; and, finally, 4) the discovery of the possibility to have a Lagrangian formulation of Carmeli’s theory on general differentiable manifolds. In the suggested approach, then, the quantized quantities are not the components of the metric tensor but quantities that arise naturally in the SL(2, C) gauge theory, and the problem of the absence of a space-time with a given structure as a background does not arise, because the quantization is based on a Lagrangian defined over a general differentiable manifold. |
8 | ″ | schema:genre | article |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N3e863100c3b5460a89afa7adb72b3101 |
11 | ″ | ″ | N5fff5e9a88aa44e58dac03989e3b16d7 |
12 | ″ | ″ | sg:journal.1336108 |
13 | ″ | schema:keywords | Carmeli |
14 | ″ | ″ | Lagrangian |
15 | ″ | ″ | Lagrangian formulation |
16 | ″ | ″ | absence |
17 | ″ | ″ | abstraction |
18 | ″ | ″ | approach |
19 | ″ | ″ | background |
20 | ″ | ″ | basic idea |
21 | ″ | ″ | components |
22 | ″ | ″ | confluence |
23 | ″ | ″ | connected manifolds |
24 | ″ | ″ | different levels |
25 | ″ | ″ | differentiable manifold |
26 | ″ | ″ | discovery |
27 | ″ | ″ | elements |
28 | ″ | ″ | field |
29 | ″ | ″ | formulation |
30 | ″ | ″ | gauge theory |
31 | ″ | ″ | gauge theory formulation |
32 | ″ | ″ | general differentiable manifolds |
33 | ″ | ″ | general relativity |
34 | ″ | ″ | gravity |
35 | ″ | ″ | idea |
36 | ″ | ″ | levels |
37 | ″ | ″ | manifold |
38 | ″ | ″ | metric structure |
39 | ″ | ″ | metric tensor |
40 | ″ | ″ | new approach |
41 | ″ | ″ | new perspective |
42 | ″ | ″ | perspective |
43 | ″ | ″ | possibility |
44 | ″ | ″ | problem |
45 | ″ | ″ | quantity |
46 | ″ | ″ | quantization |
47 | ″ | ″ | quantized quantity |
48 | ″ | ″ | quantum gravity |
49 | ″ | ″ | relativity |
50 | ″ | ″ | spinors |
51 | ″ | ″ | structure |
52 | ″ | ″ | suggested approach |
53 | ″ | ″ | tensor |
54 | ″ | ″ | theory |
55 | ″ | ″ | theory formulation |
56 | ″ | schema:name | A new perspective on quantum gravity |
57 | ″ | schema:pagination | 1405-1414 |
58 | ″ | schema:productId | Nc8c8c8073d4f407e85ec5371eb71c35c |
59 | ″ | ″ | Ncc6b1ce0aca5426d839fe9f894032aeb |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028486691 |
61 | ″ | ″ | https://doi.org/10.1007/bf02741479 |
62 | ″ | schema:sdDatePublished | 2022-08-04T16:51 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N9ce17cd6c94d4480917313f20de317dc |
65 | ″ | schema:url | https://doi.org/10.1007/bf02741479 |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | articles |
68 | ″ | rdf:type | schema:ScholarlyArticle |
69 | N02eb6edb573d49c4909bbd503439be78 | rdf:first | sg:person.011705574127.94 |
70 | ″ | rdf:rest | rdf:nil |
71 | N3e863100c3b5460a89afa7adb72b3101 | schema:volumeNumber | 111 |
72 | ″ | rdf:type | schema:PublicationVolume |
73 | N5fff5e9a88aa44e58dac03989e3b16d7 | schema:issueNumber | 12 |
74 | ″ | rdf:type | schema:PublicationIssue |
75 | N9ce17cd6c94d4480917313f20de317dc | schema:name | Springer Nature - SN SciGraph project |
76 | ″ | rdf:type | schema:Organization |
77 | Nc8c8c8073d4f407e85ec5371eb71c35c | schema:name | dimensions_id |
78 | ″ | schema:value | pub.1028486691 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | Ncc6b1ce0aca5426d839fe9f894032aeb | schema:name | doi |
81 | ″ | schema:value | 10.1007/bf02741479 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | Nf13c7726626b4832af3ea0b12b4e6936 | rdf:first | sg:person.015075613351.01 |
84 | ″ | rdf:rest | N02eb6edb573d49c4909bbd503439be78 |
85 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
86 | ″ | schema:name | Mathematical Sciences |
87 | ″ | rdf:type | schema:DefinedTerm |
88 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
89 | ″ | schema:name | Pure Mathematics |
90 | ″ | rdf:type | schema:DefinedTerm |
91 | sg:journal.1336108 | schema:issn | 1826-9877 |
92 | ″ | schema:name | Il Nuovo Cimento B (1971-1996) |
93 | ″ | schema:publisher | Springer Nature |
94 | ″ | rdf:type | schema:Periodical |
95 | sg:person.011705574127.94 | schema:affiliation | grid-institutes:grid.254361.7 |
96 | ″ | schema:familyName | Malin |
97 | ″ | schema:givenName | S. |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011705574127.94 |
99 | ″ | rdf:type | schema:Person |
100 | sg:person.015075613351.01 | schema:affiliation | grid-institutes:grid.7489.2 |
101 | ″ | schema:familyName | Carmeli |
102 | ″ | schema:givenName | M. |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075613351.01 |
104 | ″ | rdf:type | schema:Person |
105 | sg:pub.10.1007/bf02710875 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035257234 |
106 | ″ | ″ | https://doi.org/10.1007/bf02710875 |
107 | ″ | rdf:type | schema:CreativeWork |
108 | grid-institutes:grid.254361.7 | schema:alternateName | Department of Physics and Astronomy, Colgate University Hamilton, 13346, NY, USA |
109 | ″ | schema:name | Department of Physics and Astronomy, Colgate University Hamilton, 13346, NY, USA |
110 | ″ | rdf:type | schema:Organization |
111 | grid-institutes:grid.7489.2 | schema:alternateName | Center for Theoretical Physics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel |
112 | ″ | schema:name | Center for Theoretical Physics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel |
113 | ″ | rdf:type | schema:Organization |