The axial vector form factors and electroproduction sum rules View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1966-07

AUTHORS

G. Furlan, R. Jengo, E. Remiddi

ABSTRACT

Using a dispersive representation for the equal-time commutators of theSU2⊗SU2 algebra we get a sum rule for the axial vector form factorG(Δ2), which can be expressed in terms of the vector form factorF1V(Δ2) and of the imaginary part of the electroproduction amplitude.

PAGES

427-439

References to SciGraph publications

  • 1964-03. Regge-pole theory of the photoproduction of pions in IL NUOVO CIMENTO (1955-1965)
  • 1966-05. Nucleon magnetic moments and photoproduction sum rules in IL NUOVO CIMENTO A (1971-1996)
  • 1965-12. A dispersion theory of symmetry breaking in IL NUOVO CIMENTO A (1965-1970)
  • 1960-09. On the decay rate of the charged pion in IL NUOVO CIMENTO (1955-1965)
  • 1963-01. Analysis of photoproduction with an isobaric model in IL NUOVO CIMENTO (1955-1965)
  • Journal

    TITLE

    Il Nuovo Cimento A (1965-1970)

    ISSUE

    2

    VOLUME

    44

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02740864

    DOI

    http://dx.doi.org/10.1007/bf02740864

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021629314


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "INFN Sezione di Trieste", 
              "id": "https://www.grid.ac/institutes/grid.470223.0", 
              "name": [
                "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Trieste", 
                "Sottosezione di Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furlan", 
            "givenName": "G.", 
            "id": "sg:person.014625714377.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trieste", 
              "id": "https://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Trieste"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jengo", 
            "givenName": "R.", 
            "id": "sg:person.010513643461.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513643461.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trieste", 
              "id": "https://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Trieste"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Remiddi", 
            "givenName": "E.", 
            "id": "sg:person.016167622131.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167622131.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02812613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010418569", 
              "https://doi.org/10.1007/bf02812613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02824674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010425078", 
              "https://doi.org/10.1007/bf02824674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02824674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010425078", 
              "https://doi.org/10.1007/bf02824674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02821675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018336423", 
              "https://doi.org/10.1007/bf02821675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02753193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028032021", 
              "https://doi.org/10.1007/bf02753193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(66)90448-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031319490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(66)90448-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031319490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02727566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042343134", 
              "https://doi.org/10.1007/bf02727566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02727566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042343134", 
              "https://doi.org/10.1007/bf02727566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.111.329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060420736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.111.329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060420736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.125.1067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060424855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.125.1067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060424855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.139.b458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.139.b458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.14.1047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060767752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.14.1047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060767752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physicsphysiquefizika.1.63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101010410"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1966-07", 
        "datePublishedReg": "1966-07-01", 
        "description": "Using a dispersive representation for the equal-time commutators of theSU2\u2297SU2 algebra we get a sum rule for the axial vector form factorG(\u03942), which can be expressed in terms of the vector form factorF1V(\u03942) and of the imaginary part of the electroproduction amplitude.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02740864", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1328730", 
            "issn": [
              "0369-3546", 
              "1826-9869"
            ], 
            "name": "Il Nuovo Cimento A (1965-1970)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "name": "The axial vector form factors and electroproduction sum rules", 
        "pagination": "427-439", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "670d9028e35d3c5c3d71c962174af847b1874f4eea0958dd13f1e1f3230458b3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02740864"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021629314"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02740864", 
          "https://app.dimensions.ai/details/publication/pub.1021629314"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02740864"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02740864'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02740864'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02740864'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02740864'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      20 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02740864 schema:author N367183296aff4b6fa8a764fa890ffa2c
    2 schema:citation sg:pub.10.1007/bf02727566
    3 sg:pub.10.1007/bf02753193
    4 sg:pub.10.1007/bf02812613
    5 sg:pub.10.1007/bf02821675
    6 sg:pub.10.1007/bf02824674
    7 https://doi.org/10.1016/0031-9163(66)90448-3
    8 https://doi.org/10.1103/physicsphysiquefizika.1.63
    9 https://doi.org/10.1103/physrev.111.329
    10 https://doi.org/10.1103/physrev.125.1067
    11 https://doi.org/10.1103/physrev.139.b458
    12 https://doi.org/10.1103/physrevlett.14.1047
    13 schema:datePublished 1966-07
    14 schema:datePublishedReg 1966-07-01
    15 schema:description Using a dispersive representation for the equal-time commutators of theSU2⊗SU2 algebra we get a sum rule for the axial vector form factorG(Δ2), which can be expressed in terms of the vector form factorF1V(Δ2) and of the imaginary part of the electroproduction amplitude.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N611294b8776e4288a904675e0de9b453
    20 N676dc665d44344408c5f358ee53325c4
    21 sg:journal.1328730
    22 schema:name The axial vector form factors and electroproduction sum rules
    23 schema:pagination 427-439
    24 schema:productId N0be1d602c37a457fb9cd68e26ffe97db
    25 Ncd0b1fb094ef41358e379936d3b3932b
    26 Nd2cbe04706d34d06a4823022f31ef1a8
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021629314
    28 https://doi.org/10.1007/bf02740864
    29 schema:sdDatePublished 2019-04-11T13:28
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N00fb96a1ef86408089085a59725901df
    32 schema:url http://link.springer.com/10.1007%2FBF02740864
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N00fb96a1ef86408089085a59725901df schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 N0748b6b1747c4d6d99c9ad3edb396d8c rdf:first sg:person.016167622131.11
    39 rdf:rest rdf:nil
    40 N0be1d602c37a457fb9cd68e26ffe97db schema:name dimensions_id
    41 schema:value pub.1021629314
    42 rdf:type schema:PropertyValue
    43 N367183296aff4b6fa8a764fa890ffa2c rdf:first sg:person.014625714377.67
    44 rdf:rest Na7b3be35e08f4a368da81a0c3a83141a
    45 N611294b8776e4288a904675e0de9b453 schema:issueNumber 2
    46 rdf:type schema:PublicationIssue
    47 N676dc665d44344408c5f358ee53325c4 schema:volumeNumber 44
    48 rdf:type schema:PublicationVolume
    49 Na7b3be35e08f4a368da81a0c3a83141a rdf:first sg:person.010513643461.57
    50 rdf:rest N0748b6b1747c4d6d99c9ad3edb396d8c
    51 Ncd0b1fb094ef41358e379936d3b3932b schema:name readcube_id
    52 schema:value 670d9028e35d3c5c3d71c962174af847b1874f4eea0958dd13f1e1f3230458b3
    53 rdf:type schema:PropertyValue
    54 Nd2cbe04706d34d06a4823022f31ef1a8 schema:name doi
    55 schema:value 10.1007/bf02740864
    56 rdf:type schema:PropertyValue
    57 sg:journal.1328730 schema:issn 0369-3546
    58 1826-9869
    59 schema:name Il Nuovo Cimento A (1965-1970)
    60 rdf:type schema:Periodical
    61 sg:person.010513643461.57 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
    62 schema:familyName Jengo
    63 schema:givenName R.
    64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513643461.57
    65 rdf:type schema:Person
    66 sg:person.014625714377.67 schema:affiliation https://www.grid.ac/institutes/grid.470223.0
    67 schema:familyName Furlan
    68 schema:givenName G.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67
    70 rdf:type schema:Person
    71 sg:person.016167622131.11 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
    72 schema:familyName Remiddi
    73 schema:givenName E.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167622131.11
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf02727566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042343134
    77 https://doi.org/10.1007/bf02727566
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02753193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028032021
    80 https://doi.org/10.1007/bf02753193
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf02812613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010418569
    83 https://doi.org/10.1007/bf02812613
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf02821675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018336423
    86 https://doi.org/10.1007/bf02821675
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf02824674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010425078
    89 https://doi.org/10.1007/bf02824674
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/0031-9163(66)90448-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031319490
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1103/physicsphysiquefizika.1.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101010410
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physrev.111.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060420736
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/physrev.125.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060424855
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/physrev.139.b458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431268
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1103/physrevlett.14.1047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060767752
    102 rdf:type schema:CreativeWork
    103 https://www.grid.ac/institutes/grid.470223.0 schema:alternateName INFN Sezione di Trieste
    104 schema:name Istituto di Fisica Teorica dell’Università, Trieste
    105 Sottosezione di Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
    106 rdf:type schema:Organization
    107 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
    108 schema:name Istituto di Fisica Teorica dell’Università, Trieste
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...