The axial vector form factors and electroproduction sum rules View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1966-07

AUTHORS

G. Furlan, R. Jengo, E. Remiddi

ABSTRACT

Using a dispersive representation for the equal-time commutators of theSU2⊗SU2 algebra we get a sum rule for the axial vector form factorG(Δ2), which can be expressed in terms of the vector form factorF1V(Δ2) and of the imaginary part of the electroproduction amplitude.

PAGES

427-439

References to SciGraph publications

  • 1964-03. Regge-pole theory of the photoproduction of pions in IL NUOVO CIMENTO (1955-1965)
  • 1966-05. Nucleon magnetic moments and photoproduction sum rules in IL NUOVO CIMENTO A (1971-1996)
  • 1965-12. A dispersion theory of symmetry breaking in IL NUOVO CIMENTO A (1965-1970)
  • 1960-09. On the decay rate of the charged pion in IL NUOVO CIMENTO (1955-1965)
  • 1963-01. Analysis of photoproduction with an isobaric model in IL NUOVO CIMENTO (1955-1965)
  • Journal

    TITLE

    Il Nuovo Cimento A (1965-1970)

    ISSUE

    2

    VOLUME

    44

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02740864

    DOI

    http://dx.doi.org/10.1007/bf02740864

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021629314


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "INFN Sezione di Trieste", 
              "id": "https://www.grid.ac/institutes/grid.470223.0", 
              "name": [
                "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Trieste", 
                "Sottosezione di Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furlan", 
            "givenName": "G.", 
            "id": "sg:person.014625714377.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trieste", 
              "id": "https://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Trieste"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jengo", 
            "givenName": "R.", 
            "id": "sg:person.010513643461.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513643461.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trieste", 
              "id": "https://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Trieste"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Remiddi", 
            "givenName": "E.", 
            "id": "sg:person.016167622131.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167622131.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02812613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010418569", 
              "https://doi.org/10.1007/bf02812613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02824674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010425078", 
              "https://doi.org/10.1007/bf02824674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02824674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010425078", 
              "https://doi.org/10.1007/bf02824674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02821675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018336423", 
              "https://doi.org/10.1007/bf02821675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02753193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028032021", 
              "https://doi.org/10.1007/bf02753193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(66)90448-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031319490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(66)90448-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031319490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02727566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042343134", 
              "https://doi.org/10.1007/bf02727566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02727566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042343134", 
              "https://doi.org/10.1007/bf02727566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.111.329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060420736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.111.329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060420736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.125.1067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060424855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.125.1067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060424855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.139.b458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.139.b458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.14.1047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060767752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.14.1047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060767752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physicsphysiquefizika.1.63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101010410"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1966-07", 
        "datePublishedReg": "1966-07-01", 
        "description": "Using a dispersive representation for the equal-time commutators of theSU2\u2297SU2 algebra we get a sum rule for the axial vector form factorG(\u03942), which can be expressed in terms of the vector form factorF1V(\u03942) and of the imaginary part of the electroproduction amplitude.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02740864", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1328730", 
            "issn": [
              "0369-3546", 
              "1826-9869"
            ], 
            "name": "Il Nuovo Cimento A (1965-1970)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "name": "The axial vector form factors and electroproduction sum rules", 
        "pagination": "427-439", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "670d9028e35d3c5c3d71c962174af847b1874f4eea0958dd13f1e1f3230458b3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02740864"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021629314"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02740864", 
          "https://app.dimensions.ai/details/publication/pub.1021629314"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02740864"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02740864'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02740864'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02740864'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02740864'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      20 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02740864 schema:author N2feacb2779234abb903ddadba767ed88
    2 schema:citation sg:pub.10.1007/bf02727566
    3 sg:pub.10.1007/bf02753193
    4 sg:pub.10.1007/bf02812613
    5 sg:pub.10.1007/bf02821675
    6 sg:pub.10.1007/bf02824674
    7 https://doi.org/10.1016/0031-9163(66)90448-3
    8 https://doi.org/10.1103/physicsphysiquefizika.1.63
    9 https://doi.org/10.1103/physrev.111.329
    10 https://doi.org/10.1103/physrev.125.1067
    11 https://doi.org/10.1103/physrev.139.b458
    12 https://doi.org/10.1103/physrevlett.14.1047
    13 schema:datePublished 1966-07
    14 schema:datePublishedReg 1966-07-01
    15 schema:description Using a dispersive representation for the equal-time commutators of theSU2⊗SU2 algebra we get a sum rule for the axial vector form factorG(Δ2), which can be expressed in terms of the vector form factorF1V(Δ2) and of the imaginary part of the electroproduction amplitude.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N83ac37d6fc77468b9e8a32f0e8755b7c
    20 Nc3a3f7ba114d4b6a969d519f0a8f365e
    21 sg:journal.1328730
    22 schema:name The axial vector form factors and electroproduction sum rules
    23 schema:pagination 427-439
    24 schema:productId N05cc7ca24c844d1bb011ffaa2425106a
    25 N2181b53f714e4e80bf63bc0a060b2d04
    26 Nac138697503d44ad8f51794ecc8e1b09
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021629314
    28 https://doi.org/10.1007/bf02740864
    29 schema:sdDatePublished 2019-04-11T13:28
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nc64a693dbacb4627b6a731e10f2af446
    32 schema:url http://link.springer.com/10.1007%2FBF02740864
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N05cc7ca24c844d1bb011ffaa2425106a schema:name readcube_id
    37 schema:value 670d9028e35d3c5c3d71c962174af847b1874f4eea0958dd13f1e1f3230458b3
    38 rdf:type schema:PropertyValue
    39 N2181b53f714e4e80bf63bc0a060b2d04 schema:name doi
    40 schema:value 10.1007/bf02740864
    41 rdf:type schema:PropertyValue
    42 N2feacb2779234abb903ddadba767ed88 rdf:first sg:person.014625714377.67
    43 rdf:rest Nf7d32aa93cfc4470a01af91ab480e74b
    44 N83ac37d6fc77468b9e8a32f0e8755b7c schema:volumeNumber 44
    45 rdf:type schema:PublicationVolume
    46 Nac138697503d44ad8f51794ecc8e1b09 schema:name dimensions_id
    47 schema:value pub.1021629314
    48 rdf:type schema:PropertyValue
    49 Nc3a3f7ba114d4b6a969d519f0a8f365e schema:issueNumber 2
    50 rdf:type schema:PublicationIssue
    51 Nc64a693dbacb4627b6a731e10f2af446 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Nc8263852b123447fbfb1ea307f3cae89 rdf:first sg:person.016167622131.11
    54 rdf:rest rdf:nil
    55 Nf7d32aa93cfc4470a01af91ab480e74b rdf:first sg:person.010513643461.57
    56 rdf:rest Nc8263852b123447fbfb1ea307f3cae89
    57 sg:journal.1328730 schema:issn 0369-3546
    58 1826-9869
    59 schema:name Il Nuovo Cimento A (1965-1970)
    60 rdf:type schema:Periodical
    61 sg:person.010513643461.57 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
    62 schema:familyName Jengo
    63 schema:givenName R.
    64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513643461.57
    65 rdf:type schema:Person
    66 sg:person.014625714377.67 schema:affiliation https://www.grid.ac/institutes/grid.470223.0
    67 schema:familyName Furlan
    68 schema:givenName G.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67
    70 rdf:type schema:Person
    71 sg:person.016167622131.11 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
    72 schema:familyName Remiddi
    73 schema:givenName E.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167622131.11
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf02727566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042343134
    77 https://doi.org/10.1007/bf02727566
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02753193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028032021
    80 https://doi.org/10.1007/bf02753193
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf02812613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010418569
    83 https://doi.org/10.1007/bf02812613
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf02821675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018336423
    86 https://doi.org/10.1007/bf02821675
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf02824674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010425078
    89 https://doi.org/10.1007/bf02824674
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/0031-9163(66)90448-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031319490
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1103/physicsphysiquefizika.1.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101010410
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physrev.111.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060420736
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/physrev.125.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060424855
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/physrev.139.b458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431268
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1103/physrevlett.14.1047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060767752
    102 rdf:type schema:CreativeWork
    103 https://www.grid.ac/institutes/grid.470223.0 schema:alternateName INFN Sezione di Trieste
    104 schema:name Istituto di Fisica Teorica dell’Università, Trieste
    105 Sottosezione di Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
    106 rdf:type schema:Organization
    107 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
    108 schema:name Istituto di Fisica Teorica dell’Università, Trieste
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...