Analytic regularization and the divergences of quantum field theories View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1964-02

AUTHORS

C. G. Bollini, J. J. Giambiagi, A. Gonzáles Domínguez

ABSTRACT

We present a method of analytic regularization with which any element of theS-matrix becomes an analytic function of a complex parameter. The usual divergences appear simply as poles at the physical value of the parameter. The subtraction of these poles leads to the usual finite parts. A simple example is discussed, in which the mathematical justification for these subtractions is given. In the consideration of this example we discuss the causal Green functions of the iterated D’Alembertian. They are constructed from the retarded and advanced solutions introduced byM. Riesz. The application to the self-energy of the electron is explicitly given. An heuristic deduction is then used to convert the problem of the evaluation of the self-energy into the problem of solving a differential equation. The self-energy integral is a formal solution of the latter equation, the finite part (with the pole subtracted) being a rigorous solution. More... »

PAGES

550-561

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02733756

DOI

http://dx.doi.org/10.1007/bf02733756

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013988929


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de F\u00edsica, Facultad de Ciencias Exactas, Buenos Aires", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Departamento de F\u00edsica, Facultad de Ciencias Exactas, Buenos Aires"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bollini", 
        "givenName": "C. G.", 
        "id": "sg:person.013152606345.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013152606345.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de F\u00edsica, Facultad de Ciencias Exactas, Buenos Aires", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Departamento de F\u00edsica, Facultad de Ciencias Exactas, Buenos Aires"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giambiagi", 
        "givenName": "J. J.", 
        "id": "sg:person.014545547345.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545547345.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Matem\u00e1tica, Facultad de Ciencias Exactas, Buenos Aires", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Departamento de Matem\u00e1tica, Facultad de Ciencias Exactas, Buenos Aires"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dom\u00ednguez", 
        "givenName": "A. Gonz\u00e1les", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-7091-2090-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028573072", 
          "https://doi.org/10.1007/978-3-7091-2090-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02732779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012061548", 
          "https://doi.org/10.1007/bf02732779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02395016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017898857", 
          "https://doi.org/10.1007/bf02395016"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1964-02", 
    "datePublishedReg": "1964-02-01", 
    "description": "We present a method of analytic regularization with which any element of theS-matrix becomes an analytic function of a complex parameter. The usual divergences appear simply as poles at the physical value of the parameter. The subtraction of these poles leads to the usual finite parts. A simple example is discussed, in which the mathematical justification for these subtractions is given. In the consideration of this example we discuss the causal Green functions of the iterated D\u2019Alembertian. They are constructed from the retarded and advanced solutions introduced byM. Riesz. The application to the self-energy of the electron is explicitly given. An heuristic deduction is then used to convert the problem of the evaluation of the self-energy into the problem of solving a differential equation. The self-energy integral is a formal solution of the latter equation, the finite part (with the pole subtracted) being a rigorous solution.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02733756", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336106", 
        "issn": [
          "1827-6121"
        ], 
        "name": "Il Nuovo Cimento (1955-1965)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "analytic regularization", 
      "finite part", 
      "quantum field theory", 
      "self-energy integrals", 
      "causal Green's function", 
      "theS-matrix", 
      "differential equations", 
      "mathematical justification", 
      "field theory", 
      "usual divergence", 
      "analytic functions", 
      "latter equation", 
      "formal solution", 
      "simple example", 
      "complex parameters", 
      "rigorous solution", 
      "Green's function", 
      "equations", 
      "regularization", 
      "solution", 
      "problem", 
      "d\u2019Alembertian", 
      "physical values", 
      "integrals", 
      "advanced solutions", 
      "parameters", 
      "theory", 
      "pole", 
      "function", 
      "divergence", 
      "applications", 
      "deduction", 
      "subtraction", 
      "justification", 
      "consideration", 
      "elements", 
      "part", 
      "values", 
      "evaluation", 
      "electrons", 
      "example", 
      "method", 
      "usual finite parts", 
      "heuristic deduction"
    ], 
    "name": "Analytic regularization and the divergences of quantum field theories", 
    "pagination": "550-561", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013988929"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02733756"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02733756", 
      "https://app.dimensions.ai/details/publication/pub.1013988929"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_82.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02733756"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02733756'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02733756'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02733756'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02733756'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      73 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02733756 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N91777392997048faabc25ec5ea6fafaf
4 schema:citation sg:pub.10.1007/978-3-7091-2090-3
5 sg:pub.10.1007/bf02395016
6 sg:pub.10.1007/bf02732779
7 schema:datePublished 1964-02
8 schema:datePublishedReg 1964-02-01
9 schema:description We present a method of analytic regularization with which any element of theS-matrix becomes an analytic function of a complex parameter. The usual divergences appear simply as poles at the physical value of the parameter. The subtraction of these poles leads to the usual finite parts. A simple example is discussed, in which the mathematical justification for these subtractions is given. In the consideration of this example we discuss the causal Green functions of the iterated D’Alembertian. They are constructed from the retarded and advanced solutions introduced byM. Riesz. The application to the self-energy of the electron is explicitly given. An heuristic deduction is then used to convert the problem of the evaluation of the self-energy into the problem of solving a differential equation. The self-energy integral is a formal solution of the latter equation, the finite part (with the pole subtracted) being a rigorous solution.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N0c04b5c11f52483cbd6e7a2ed929224d
14 N577e5b9594e24535b02ac2a751203e3a
15 sg:journal.1336106
16 schema:keywords Green's function
17 advanced solutions
18 analytic functions
19 analytic regularization
20 applications
21 causal Green's function
22 complex parameters
23 consideration
24 deduction
25 differential equations
26 divergence
27 d’Alembertian
28 electrons
29 elements
30 equations
31 evaluation
32 example
33 field theory
34 finite part
35 formal solution
36 function
37 heuristic deduction
38 integrals
39 justification
40 latter equation
41 mathematical justification
42 method
43 parameters
44 part
45 physical values
46 pole
47 problem
48 quantum field theory
49 regularization
50 rigorous solution
51 self-energy integrals
52 simple example
53 solution
54 subtraction
55 theS-matrix
56 theory
57 usual divergence
58 usual finite parts
59 values
60 schema:name Analytic regularization and the divergences of quantum field theories
61 schema:pagination 550-561
62 schema:productId N581799c7240648b59a803a50d1a556ae
63 Ndc471521e6c84b71882cda92a2b5bbf0
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013988929
65 https://doi.org/10.1007/bf02733756
66 schema:sdDatePublished 2022-01-01T18:55
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N1062d63e3c9449519c616af80f7c07d7
69 schema:url https://doi.org/10.1007/bf02733756
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0c04b5c11f52483cbd6e7a2ed929224d schema:issueNumber 3
74 rdf:type schema:PublicationIssue
75 N1062d63e3c9449519c616af80f7c07d7 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N28461f50f86f438f8f4675a5dace7b93 schema:affiliation grid-institutes:None
78 schema:familyName Domínguez
79 schema:givenName A. Gonzáles
80 rdf:type schema:Person
81 N577e5b9594e24535b02ac2a751203e3a schema:volumeNumber 31
82 rdf:type schema:PublicationVolume
83 N581799c7240648b59a803a50d1a556ae schema:name doi
84 schema:value 10.1007/bf02733756
85 rdf:type schema:PropertyValue
86 N7636ae100fdd460e86b5016cfe69129b rdf:first sg:person.014545547345.08
87 rdf:rest Ne870fc6cfdb446e984785c0d2e0cfe11
88 N91777392997048faabc25ec5ea6fafaf rdf:first sg:person.013152606345.11
89 rdf:rest N7636ae100fdd460e86b5016cfe69129b
90 Ndc471521e6c84b71882cda92a2b5bbf0 schema:name dimensions_id
91 schema:value pub.1013988929
92 rdf:type schema:PropertyValue
93 Ne870fc6cfdb446e984785c0d2e0cfe11 rdf:first N28461f50f86f438f8f4675a5dace7b93
94 rdf:rest rdf:nil
95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
96 schema:name Mathematical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
99 schema:name Statistics
100 rdf:type schema:DefinedTerm
101 sg:journal.1336106 schema:issn 1827-6121
102 schema:name Il Nuovo Cimento (1955-1965)
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.013152606345.11 schema:affiliation grid-institutes:None
106 schema:familyName Bollini
107 schema:givenName C. G.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013152606345.11
109 rdf:type schema:Person
110 sg:person.014545547345.08 schema:affiliation grid-institutes:None
111 schema:familyName Giambiagi
112 schema:givenName J. J.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545547345.08
114 rdf:type schema:Person
115 sg:pub.10.1007/978-3-7091-2090-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028573072
116 https://doi.org/10.1007/978-3-7091-2090-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf02395016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017898857
119 https://doi.org/10.1007/bf02395016
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf02732779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012061548
122 https://doi.org/10.1007/bf02732779
123 rdf:type schema:CreativeWork
124 grid-institutes:None schema:alternateName Departamento de Física, Facultad de Ciencias Exactas, Buenos Aires
125 Departamento de Matemática, Facultad de Ciencias Exactas, Buenos Aires
126 schema:name Departamento de Física, Facultad de Ciencias Exactas, Buenos Aires
127 Departamento de Matemática, Facultad de Ciencias Exactas, Buenos Aires
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...