Bifractality of the devil’s staircase appearing in the burgers equation with brownian initial velocity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-09

AUTHORS

E. Aurell, U. Frisch, A. Noullez, M. Blank

ABSTRACT

It is shown that the inverse Lagrangian map for the solution of the Burgers equation (in the inviscid limit) with Brownian initial velocity presents a bifractality (phase transition) similar to that of the Devil’s staircase for the standard triadic Cantor set. Both heuristic and rigorous derivations are given. It is explained why artifacts can easily mask this phenomenon in numerical simulations. More... »

PAGES

1151-1164

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02732429

DOI

http://dx.doi.org/10.1007/bf02732429

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042874238


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Center for Parallel Computers, Royal Institute of Technology, S-100 44, Stockholm, Sweden", 
            "Mathematics Department, Stockholm University, S-106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aurell", 
        "givenName": "E.", 
        "id": "sg:person.01104576776.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Observatoire de Nice, URA CNRS 1362, B.P. 4229, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "U.", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Observatoire de Nice, URA CNRS 1362, B.P. 4229, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noullez", 
        "givenName": "A.", 
        "id": "sg:person.01262773202.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262773202.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Information Transmission Problems", 
          "id": "https://www.grid.ac/institutes/grid.435025.5", 
          "name": [
            "Observatoire de Nice, URA CNRS 1362, B.P. 4229, 06304, Nice Cedex 4, France", 
            "Institute for Information Transmission Problems, 101477, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blank", 
        "givenName": "M.", 
        "id": "sg:person.016626051205.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626051205.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02096550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001608199", 
          "https://doi.org/10.1007/bf02096550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001608199", 
          "https://doi.org/10.1007/bf02096550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050362339", 
          "https://doi.org/10.1007/bf02096551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050362339", 
          "https://doi.org/10.1007/bf02096551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.39.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.39.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478819"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-09", 
    "datePublishedReg": "1997-09-01", 
    "description": "It is shown that the inverse Lagrangian map for the solution of the Burgers equation (in the inviscid limit) with Brownian initial velocity presents a bifractality (phase transition) similar to that of the Devil\u2019s staircase for the standard triadic Cantor set. Both heuristic and rigorous derivations are given. It is explained why artifacts can easily mask this phenomenon in numerical simulations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02732429", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "88"
      }
    ], 
    "name": "Bifractality of the devil\u2019s staircase appearing in the burgers equation with brownian initial velocity", 
    "pagination": "1151-1164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cc3a34aa6423a9fa50c2e2f3abfe38ad09b08ffbef501157daf665998441c8cd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02732429"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042874238"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02732429", 
      "https://app.dimensions.ai/details/publication/pub.1042874238"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02732429"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02732429'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02732429'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02732429'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02732429'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02732429 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N3ef2d8bec1db4dfaa84f749c645b5c22
4 schema:citation sg:pub.10.1007/bf02096550
5 sg:pub.10.1007/bf02096551
6 https://doi.org/10.1103/physreva.39.268
7 schema:datePublished 1997-09
8 schema:datePublishedReg 1997-09-01
9 schema:description It is shown that the inverse Lagrangian map for the solution of the Burgers equation (in the inviscid limit) with Brownian initial velocity presents a bifractality (phase transition) similar to that of the Devil’s staircase for the standard triadic Cantor set. Both heuristic and rigorous derivations are given. It is explained why artifacts can easily mask this phenomenon in numerical simulations.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N836fde9153a641ec85ee9bbad1f91e34
14 N85c238a816774a9fb88e7d0035b154e2
15 sg:journal.1040979
16 schema:name Bifractality of the devil’s staircase appearing in the burgers equation with brownian initial velocity
17 schema:pagination 1151-1164
18 schema:productId N75999d16423a45aca16cb8f53a83773d
19 N7d0c8c032f7141aab753cad7b74ef60c
20 Ne22bad3703d64e1badb92d5f24b38498
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042874238
22 https://doi.org/10.1007/bf02732429
23 schema:sdDatePublished 2019-04-10T17:30
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N3dcd184ab72f4de5ba7fc245e9bf10e8
26 schema:url http://link.springer.com/10.1007%2FBF02732429
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N3dcd184ab72f4de5ba7fc245e9bf10e8 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N3ef2d8bec1db4dfaa84f749c645b5c22 rdf:first sg:person.01104576776.49
33 rdf:rest N9fd2440680014cb5bc6e9bd112c3e3d4
34 N75999d16423a45aca16cb8f53a83773d schema:name dimensions_id
35 schema:value pub.1042874238
36 rdf:type schema:PropertyValue
37 N7d0c8c032f7141aab753cad7b74ef60c schema:name doi
38 schema:value 10.1007/bf02732429
39 rdf:type schema:PropertyValue
40 N836fde9153a641ec85ee9bbad1f91e34 schema:volumeNumber 88
41 rdf:type schema:PublicationVolume
42 N85c238a816774a9fb88e7d0035b154e2 schema:issueNumber 5-6
43 rdf:type schema:PublicationIssue
44 N9fd2440680014cb5bc6e9bd112c3e3d4 rdf:first sg:person.011615073661.47
45 rdf:rest Ne690e9694a8148f68145c644ff0c63d5
46 Na7aadcd3d2af4e5da06b7f162ade6073 rdf:first sg:person.016626051205.94
47 rdf:rest rdf:nil
48 Nb206e6826aaa4753ac10b532cbeeafd4 schema:name Observatoire de Nice, URA CNRS 1362, B.P. 4229, 06304, Nice Cedex 4, France
49 rdf:type schema:Organization
50 Nbb8a4c390e9e46558aaa8b49a64350cf schema:name Observatoire de Nice, URA CNRS 1362, B.P. 4229, 06304, Nice Cedex 4, France
51 rdf:type schema:Organization
52 Ne22bad3703d64e1badb92d5f24b38498 schema:name readcube_id
53 schema:value cc3a34aa6423a9fa50c2e2f3abfe38ad09b08ffbef501157daf665998441c8cd
54 rdf:type schema:PropertyValue
55 Ne690e9694a8148f68145c644ff0c63d5 rdf:first sg:person.01262773202.94
56 rdf:rest Na7aadcd3d2af4e5da06b7f162ade6073
57 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
58 schema:name Engineering
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
61 schema:name Interdisciplinary Engineering
62 rdf:type schema:DefinedTerm
63 sg:journal.1040979 schema:issn 0022-4715
64 1572-9613
65 schema:name Journal of Statistical Physics
66 rdf:type schema:Periodical
67 sg:person.01104576776.49 schema:affiliation https://www.grid.ac/institutes/grid.10548.38
68 schema:familyName Aurell
69 schema:givenName E.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49
71 rdf:type schema:Person
72 sg:person.011615073661.47 schema:affiliation Nb206e6826aaa4753ac10b532cbeeafd4
73 schema:familyName Frisch
74 schema:givenName U.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
76 rdf:type schema:Person
77 sg:person.01262773202.94 schema:affiliation Nbb8a4c390e9e46558aaa8b49a64350cf
78 schema:familyName Noullez
79 schema:givenName A.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262773202.94
81 rdf:type schema:Person
82 sg:person.016626051205.94 schema:affiliation https://www.grid.ac/institutes/grid.435025.5
83 schema:familyName Blank
84 schema:givenName M.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626051205.94
86 rdf:type schema:Person
87 sg:pub.10.1007/bf02096550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001608199
88 https://doi.org/10.1007/bf02096550
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02096551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050362339
91 https://doi.org/10.1007/bf02096551
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physreva.39.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060478819
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.10548.38 schema:alternateName Stockholm University
96 schema:name Center for Parallel Computers, Royal Institute of Technology, S-100 44, Stockholm, Sweden
97 Mathematics Department, Stockholm University, S-106 91, Stockholm, Sweden
98 rdf:type schema:Organization
99 https://www.grid.ac/institutes/grid.435025.5 schema:alternateName Institute for Information Transmission Problems
100 schema:name Institute for Information Transmission Problems, 101477, Moscow, Russia
101 Observatoire de Nice, URA CNRS 1362, B.P. 4229, 06304, Nice Cedex 4, France
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...