Gyromagnetic ratio and galilean symmetries in the light-cone formulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1976-10

AUTHORS

E. Elizalde, J. Gomis

ABSTRACT

The Galilean symmetries of the light-cone formulation of the wave equations are further exploited. The formulation in this frame of the Dirac, Bargmann-Wigner, Proca and Rarita-Schwinger equations is seen to give the Galilean invariant field equations of Levy-Leblond, and Hagen and Hurley. In the cases studied here, the two possible ways in which the symmetry of the LCF can be used,i.e. either obtaining first the Galilean invariant free equations from the relativistic ones in the LCF and introducing the minimal coupling there, or, as in the preceding paper, working with relativistic equations in the interacting case and using the Galilean symmetries of the LCF at the end of the calculations, give the same result, provided that the Galilean theory is the 6s + 1 minimal one. Otherwise, the first way proves to be the right one in order to get the usual resultg(s)=1/s for the gyromagnetic ratio. In fact the equations of Proca and Rarita-Schwinger, which do not give minimal Galilean theories, produce anomalous results forg(s) when they are treated in the second way. A general method is developed in order to get the good field variables in the LCF for every spin. A difference between the light-cone approach and that of the usual nonrelativistic limit of the relativistic theories is seen to be the fact that the first gives only the pure nonrelativistic structure (i.e. just the lowest-order term) of the theory. More... »

PAGES

347-366

References to SciGraph publications

  • 1976-10. Gyromagnetic ratio and galilean symmetries in the light-cone formulation in IL NUOVO CIMENTO A (1965-1970)
  • 1967-12. Nonrelativistic particles and wave equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1966-07. A lagrange formalism and the relativistic quantization of the Bargmann-Wigner fields in IL NUOVO CIMENTO A (1965-1970)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02730289

    DOI

    http://dx.doi.org/10.1007/bf02730289

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040130774


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Barcelona", 
              "id": "https://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Department of Theoretical Physics and G.I.F.T., University of Barcelona, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Elizalde", 
            "givenName": "E.", 
            "id": "sg:person.015426466163.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015426466163.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Barcelona", 
              "id": "https://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Department of Theoretical Physics and G.I.F.T., University of Barcelona, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gomis", 
            "givenName": "J.", 
            "id": "sg:person.015405052605.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015405052605.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01646020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006856625", 
              "https://doi.org/10.1007/bf01646020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01646020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006856625", 
              "https://doi.org/10.1007/bf01646020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02730288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010996719", 
              "https://doi.org/10.1007/bf02730288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02730288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010996719", 
              "https://doi.org/10.1007/bf02730288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1965.0057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023277997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02720171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025711771", 
              "https://doi.org/10.1007/bf02720171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02720171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025711771", 
              "https://doi.org/10.1007/bf02720171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.165.1415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060437209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.165.1415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060437209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.92.997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060461593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.92.997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060461593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.1.2901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060682069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.1.2901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060682069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.3.1382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060691519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.3.1382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060691519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.7.1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060705586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.7.1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060705586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.24.1381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060773257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.24.1381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060773257"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1976-10", 
        "datePublishedReg": "1976-10-01", 
        "description": "The Galilean symmetries of the light-cone formulation of the wave equations are further exploited. The formulation in this frame of the Dirac, Bargmann-Wigner, Proca and Rarita-Schwinger equations is seen to give the Galilean invariant field equations of Levy-Leblond, and Hagen and Hurley. In the cases studied here, the two possible ways in which the symmetry of the LCF can be used,i.e. either obtaining first the Galilean invariant free equations from the relativistic ones in the LCF and introducing the minimal coupling there, or, as in the preceding paper, working with relativistic equations in the interacting case and using the Galilean symmetries of the LCF at the end of the calculations, give the same result, provided that the Galilean theory is the 6s + 1 minimal one. Otherwise, the first way proves to be the right one in order to get the usual resultg(s)=1/s for the gyromagnetic ratio. In fact the equations of Proca and Rarita-Schwinger, which do not give minimal Galilean theories, produce anomalous results forg(s) when they are treated in the second way. A general method is developed in order to get the good field variables in the LCF for every spin. A difference between the light-cone approach and that of the usual nonrelativistic limit of the relativistic theories is seen to be the fact that the first gives only the pure nonrelativistic structure (i.e. just the lowest-order term) of the theory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02730289", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1328730", 
            "issn": [
              "0369-3546", 
              "1826-9869"
            ], 
            "name": "Il Nuovo Cimento A (1965-1970)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "name": "Gyromagnetic ratio and galilean symmetries in the light-cone formulation", 
        "pagination": "347-366", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bf2b6ae0d87328429eb1e6a95cd7345864740b724abbb6cc0fed6f4f75b8b522"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02730289"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040130774"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02730289", 
          "https://app.dimensions.ai/details/publication/pub.1040130774"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02730289"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02730289'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02730289'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02730289'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02730289'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02730289 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N40ccbb6dcef843ff96006ecabb414312
    4 schema:citation sg:pub.10.1007/bf01646020
    5 sg:pub.10.1007/bf02720171
    6 sg:pub.10.1007/bf02730288
    7 https://doi.org/10.1098/rspa.1965.0057
    8 https://doi.org/10.1103/physrev.165.1415
    9 https://doi.org/10.1103/physrev.92.997
    10 https://doi.org/10.1103/physrevd.1.2901
    11 https://doi.org/10.1103/physrevd.3.1382
    12 https://doi.org/10.1103/physrevd.7.1133
    13 https://doi.org/10.1103/physrevlett.24.1381
    14 schema:datePublished 1976-10
    15 schema:datePublishedReg 1976-10-01
    16 schema:description The Galilean symmetries of the light-cone formulation of the wave equations are further exploited. The formulation in this frame of the Dirac, Bargmann-Wigner, Proca and Rarita-Schwinger equations is seen to give the Galilean invariant field equations of Levy-Leblond, and Hagen and Hurley. In the cases studied here, the two possible ways in which the symmetry of the LCF can be used,i.e. either obtaining first the Galilean invariant free equations from the relativistic ones in the LCF and introducing the minimal coupling there, or, as in the preceding paper, working with relativistic equations in the interacting case and using the Galilean symmetries of the LCF at the end of the calculations, give the same result, provided that the Galilean theory is the 6s + 1 minimal one. Otherwise, the first way proves to be the right one in order to get the usual resultg(s)=1/s for the gyromagnetic ratio. In fact the equations of Proca and Rarita-Schwinger, which do not give minimal Galilean theories, produce anomalous results forg(s) when they are treated in the second way. A general method is developed in order to get the good field variables in the LCF for every spin. A difference between the light-cone approach and that of the usual nonrelativistic limit of the relativistic theories is seen to be the fact that the first gives only the pure nonrelativistic structure (i.e. just the lowest-order term) of the theory.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N2636747c619b4581baa43ca81097c11a
    21 N40fc55a99466494f9c97349418552912
    22 sg:journal.1328730
    23 schema:name Gyromagnetic ratio and galilean symmetries in the light-cone formulation
    24 schema:pagination 347-366
    25 schema:productId N7359581ec2cc492e8ace20ccb6c7ff42
    26 N8761fa5ccfd0439db36f5a73977a8d44
    27 Nc74de60f52b44c9a9542d93bb5accb98
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040130774
    29 https://doi.org/10.1007/bf02730289
    30 schema:sdDatePublished 2019-04-11T13:32
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher Nb680c90b676e4926b8e69f685632af24
    33 schema:url http://link.springer.com/10.1007/BF02730289
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N2636747c619b4581baa43ca81097c11a schema:issueNumber 3
    38 rdf:type schema:PublicationIssue
    39 N27aab9da76b943679db44f263c2ba03d rdf:first sg:person.015405052605.25
    40 rdf:rest rdf:nil
    41 N40ccbb6dcef843ff96006ecabb414312 rdf:first sg:person.015426466163.02
    42 rdf:rest N27aab9da76b943679db44f263c2ba03d
    43 N40fc55a99466494f9c97349418552912 schema:volumeNumber 35
    44 rdf:type schema:PublicationVolume
    45 N7359581ec2cc492e8ace20ccb6c7ff42 schema:name doi
    46 schema:value 10.1007/bf02730289
    47 rdf:type schema:PropertyValue
    48 N8761fa5ccfd0439db36f5a73977a8d44 schema:name dimensions_id
    49 schema:value pub.1040130774
    50 rdf:type schema:PropertyValue
    51 Nb680c90b676e4926b8e69f685632af24 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Nc74de60f52b44c9a9542d93bb5accb98 schema:name readcube_id
    54 schema:value bf2b6ae0d87328429eb1e6a95cd7345864740b724abbb6cc0fed6f4f75b8b522
    55 rdf:type schema:PropertyValue
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Pure Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1328730 schema:issn 0369-3546
    63 1826-9869
    64 schema:name Il Nuovo Cimento A (1965-1970)
    65 rdf:type schema:Periodical
    66 sg:person.015405052605.25 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
    67 schema:familyName Gomis
    68 schema:givenName J.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015405052605.25
    70 rdf:type schema:Person
    71 sg:person.015426466163.02 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
    72 schema:familyName Elizalde
    73 schema:givenName E.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015426466163.02
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf01646020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006856625
    77 https://doi.org/10.1007/bf01646020
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02720171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025711771
    80 https://doi.org/10.1007/bf02720171
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf02730288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010996719
    83 https://doi.org/10.1007/bf02730288
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1098/rspa.1965.0057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023277997
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1103/physrev.165.1415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060437209
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1103/physrev.92.997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060461593
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1103/physrevd.1.2901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060682069
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1103/physrevd.3.1382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060691519
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physrevd.7.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060705586
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/physrevlett.24.1381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060773257
    98 rdf:type schema:CreativeWork
    99 https://www.grid.ac/institutes/grid.5841.8 schema:alternateName University of Barcelona
    100 schema:name Department of Theoretical Physics and G.I.F.T., University of Barcelona, Barcelona, Spain
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...