A new approach to the theory of gravitation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1980-06

AUTHORS

V. de Alfaro, S. Fubini, G. Furlan

ABSTRACT

We discuss the role of the Newton constant in gravity theory. We show that the natural way to deal with the general covariance of the theory is to notice that the action is independent of any dimensional constant. The Newton constant is introduced in gravity through the classical constant solutionγμν=(1/l2)δμν which displays the dilatation breaking of this Poincaré invariant solution. Nothing changes for the usual results of classical gravity since the Newton constant is responsible for the low-energy limit. However, it is easy to realize that there are other solutions of gravity coupled to matter (Yang-Mills and sigma-model) where both fields have the same intensity and the Newton constant does not appear. These «non-Newtonian» solutions are due to the specific nonlinear character of general gravitation. They can be relevant to the hadron structure. The above observations give a hint that the asymptotically small-distance behaviour of the gravity theory is independent of Newton's constant and should reflect the general invariance of the theory, provided that infinite classes of quantum diagrams are summed up. More... »

PAGES

227-252

References to SciGraph publications

  • 1979-04. Gauge theories and strong gravity in IL NUOVO CIMENTO A (1971-1996)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02729033

    DOI

    http://dx.doi.org/10.1007/bf02729033

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032690340


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470222.1", 
              "name": [
                "Istituto di Fisica Teorica dell'Universit\u00e0, Torino, Italia", 
                "Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Alfaro", 
            "givenName": "V.", 
            "id": "sg:person.011016674353.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016674353.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CERN, Geneva, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, Geneva, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fubini", 
            "givenName": "S.", 
            "id": "sg:person.013207215753.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207215753.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale di Fisica Nucleare - Sezione di Trieste, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470223.0", 
              "name": [
                "Istituto di Fisica Teorica dell'Universit\u00e0, Trieste, Italia", 
                "Istituto Nazionale di Fisica Nucleare - Sezione di Trieste, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furlan", 
            "givenName": "G.", 
            "id": "sg:person.014625714377.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02902558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014038441", 
              "https://doi.org/10.1007/bf02902558"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1980-06", 
        "datePublishedReg": "1980-06-01", 
        "description": "We discuss the role of the Newton constant in gravity theory. We show that the natural way to deal with the general covariance of the theory is to notice that the action is independent of any dimensional constant. The Newton constant is introduced in gravity through the classical constant solution\u03b3\u03bc\u03bd=(1/l2)\u03b4\u03bc\u03bd which displays the dilatation breaking of this Poincar\u00e9 invariant solution. Nothing changes for the usual results of classical gravity since the Newton constant is responsible for the low-energy limit. However, it is easy to realize that there are other solutions of gravity coupled to matter (Yang-Mills and sigma-model) where both fields have the same intensity and the Newton constant does not appear. These \u00abnon-Newtonian\u00bb solutions are due to the specific nonlinear character of general gravitation. They can be relevant to the hadron structure. The above observations give a hint that the asymptotically small-distance behaviour of the gravity theory is independent of Newton's constant and should reflect the general invariance of the theory, provided that infinite classes of quantum diagrams are summed up.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02729033", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1336108", 
            "issn": [
              "1826-9877"
            ], 
            "name": "Il Nuovo Cimento B (1971-1996)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "57"
          }
        ], 
        "keywords": [
          "gravity theories", 
          "theory of gravitation", 
          "invariant solutions", 
          "low-energy limit", 
          "general covariance", 
          "classical gravity", 
          "natural way", 
          "nonlinear character", 
          "infinite class", 
          "dimensional constants", 
          "general invariance", 
          "Newton", 
          "small-distance behaviour", 
          "theory", 
          "usual results", 
          "gravitation", 
          "solution", 
          "new approach", 
          "Newton\u2019s constant", 
          "gravity", 
          "invariance", 
          "hadron structure", 
          "covariance", 
          "class", 
          "approach", 
          "breaking", 
          "diagram", 
          "field", 
          "constants", 
          "limit", 
          "way", 
          "results", 
          "structure", 
          "behavior", 
          "hints", 
          "observations", 
          "character", 
          "action", 
          "above observations", 
          "intensity", 
          "role", 
          "same intensity", 
          "quantum diagram", 
          "general gravitation", 
          "dilatation breaking", 
          "Poincar\u00e9 invariant solution", 
          "solutions of gravity", 
          "specific nonlinear character"
        ], 
        "name": "A new approach to the theory of gravitation", 
        "pagination": "227-252", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032690340"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02729033"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02729033", 
          "https://app.dimensions.ai/details/publication/pub.1032690340"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_155.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02729033"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02729033'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02729033'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02729033'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02729033'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      22 PREDICATES      75 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02729033 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9810027af35d4c1eb7374328de87f788
    4 schema:citation sg:pub.10.1007/bf02902558
    5 schema:datePublished 1980-06
    6 schema:datePublishedReg 1980-06-01
    7 schema:description We discuss the role of the Newton constant in gravity theory. We show that the natural way to deal with the general covariance of the theory is to notice that the action is independent of any dimensional constant. The Newton constant is introduced in gravity through the classical constant solutionγμν=(1/l2)δμν which displays the dilatation breaking of this Poincaré invariant solution. Nothing changes for the usual results of classical gravity since the Newton constant is responsible for the low-energy limit. However, it is easy to realize that there are other solutions of gravity coupled to matter (Yang-Mills and sigma-model) where both fields have the same intensity and the Newton constant does not appear. These «non-Newtonian» solutions are due to the specific nonlinear character of general gravitation. They can be relevant to the hadron structure. The above observations give a hint that the asymptotically small-distance behaviour of the gravity theory is independent of Newton's constant and should reflect the general invariance of the theory, provided that infinite classes of quantum diagrams are summed up.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N1493625ca24c4af7918f2f074756172a
    12 N3b96fbff60744e26b23c1e69210c9724
    13 sg:journal.1336108
    14 schema:keywords Newton
    15 Newton’s constant
    16 Poincaré invariant solution
    17 above observations
    18 action
    19 approach
    20 behavior
    21 breaking
    22 character
    23 class
    24 classical gravity
    25 constants
    26 covariance
    27 diagram
    28 dilatation breaking
    29 dimensional constants
    30 field
    31 general covariance
    32 general gravitation
    33 general invariance
    34 gravitation
    35 gravity
    36 gravity theories
    37 hadron structure
    38 hints
    39 infinite class
    40 intensity
    41 invariance
    42 invariant solutions
    43 limit
    44 low-energy limit
    45 natural way
    46 new approach
    47 nonlinear character
    48 observations
    49 quantum diagram
    50 results
    51 role
    52 same intensity
    53 small-distance behaviour
    54 solution
    55 solutions of gravity
    56 specific nonlinear character
    57 structure
    58 theory
    59 theory of gravitation
    60 usual results
    61 way
    62 schema:name A new approach to the theory of gravitation
    63 schema:pagination 227-252
    64 schema:productId N028c1c76ce674999b542dc653147fb1b
    65 Nc3624f67fc9d44f39863504698649fd6
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032690340
    67 https://doi.org/10.1007/bf02729033
    68 schema:sdDatePublished 2022-01-01T18:02
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Nda611585bab1415fb5d8555915596063
    71 schema:url https://doi.org/10.1007/bf02729033
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N028c1c76ce674999b542dc653147fb1b schema:name doi
    76 schema:value 10.1007/bf02729033
    77 rdf:type schema:PropertyValue
    78 N09d5c9ff4851439186c3ba88fd5fd9f4 rdf:first sg:person.014625714377.67
    79 rdf:rest rdf:nil
    80 N1493625ca24c4af7918f2f074756172a schema:volumeNumber 57
    81 rdf:type schema:PublicationVolume
    82 N3b96fbff60744e26b23c1e69210c9724 schema:issueNumber 2
    83 rdf:type schema:PublicationIssue
    84 N55fa01501a1d4ca8ab031afc5807350e rdf:first sg:person.013207215753.76
    85 rdf:rest N09d5c9ff4851439186c3ba88fd5fd9f4
    86 N9810027af35d4c1eb7374328de87f788 rdf:first sg:person.011016674353.80
    87 rdf:rest N55fa01501a1d4ca8ab031afc5807350e
    88 Nc3624f67fc9d44f39863504698649fd6 schema:name dimensions_id
    89 schema:value pub.1032690340
    90 rdf:type schema:PropertyValue
    91 Nda611585bab1415fb5d8555915596063 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Mathematical Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Pure Mathematics
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1336108 schema:issn 1826-9877
    100 schema:name Il Nuovo Cimento B (1971-1996)
    101 schema:publisher Springer Nature
    102 rdf:type schema:Periodical
    103 sg:person.011016674353.80 schema:affiliation grid-institutes:grid.470222.1
    104 schema:familyName de Alfaro
    105 schema:givenName V.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016674353.80
    107 rdf:type schema:Person
    108 sg:person.013207215753.76 schema:affiliation grid-institutes:grid.9132.9
    109 schema:familyName Fubini
    110 schema:givenName S.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207215753.76
    112 rdf:type schema:Person
    113 sg:person.014625714377.67 schema:affiliation grid-institutes:grid.470223.0
    114 schema:familyName Furlan
    115 schema:givenName G.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67
    117 rdf:type schema:Person
    118 sg:pub.10.1007/bf02902558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014038441
    119 https://doi.org/10.1007/bf02902558
    120 rdf:type schema:CreativeWork
    121 grid-institutes:grid.470222.1 schema:alternateName Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
    122 schema:name Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
    123 Istituto di Fisica Teorica dell'Università, Torino, Italia
    124 rdf:type schema:Organization
    125 grid-institutes:grid.470223.0 schema:alternateName Istituto Nazionale di Fisica Nucleare - Sezione di Trieste, Trieste, Italy
    126 schema:name Istituto Nazionale di Fisica Nucleare - Sezione di Trieste, Trieste, Italy
    127 Istituto di Fisica Teorica dell'Università, Trieste, Italia
    128 rdf:type schema:Organization
    129 grid-institutes:grid.9132.9 schema:alternateName CERN, Geneva, Switzerland
    130 schema:name CERN, Geneva, Switzerland
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...