Geometrization of electromagnetism and gravity based on a finsler space-time with gauge symmetry-II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-06

AUTHORS

J. P. Hsu

ABSTRACT

We investigate further the application of Finsler space-time and its gauge geometry to Maxwell’s and Yang-Mills’ theories. An important difference between gauge geometry and the conventional Finsler geometry is discussed. A formula for the total gauge covariant differentiation is obtained. The consistent mathematical properties of the metric gauge tensor, the metric connections and homogeneity conditions for gauge covariant differentiations are discussed and clarified. We calculate scalar curvature in the presence of a point charge. The physical curvature of the Finsler space-time is discussed from the field-theoretic viewpoint. More... »

PAGES

645-657

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02728447

DOI

http://dx.doi.org/10.1007/bf02728447

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002410014


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Department, University of Massachusetts Dartmouth, 02747-2300, North Dartmouth, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266686.a", 
          "name": [
            "Physics Department, University of Massachusetts Dartmouth, 02747-2300, North Dartmouth, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "J. P.", 
        "id": "sg:person.014301222742.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301222742.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02874409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040227303", 
          "https://doi.org/10.1007/bf02874409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-51610-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029674939", 
          "https://doi.org/10.1007/978-3-642-51610-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-06", 
    "datePublishedReg": "1994-06-01", 
    "description": "We investigate further the application of Finsler space-time and its gauge geometry to Maxwell\u2019s and Yang-Mills\u2019 theories. An important difference between gauge geometry and the conventional Finsler geometry is discussed. A formula for the total gauge covariant differentiation is obtained. The consistent mathematical properties of the metric gauge tensor, the metric connections and homogeneity conditions for gauge covariant differentiations are discussed and clarified. We calculate scalar curvature in the presence of a point charge. The physical curvature of the Finsler space-time is discussed from the field-theoretic viewpoint.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02728447", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336108", 
        "issn": [
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1971-1996)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "109"
      }
    ], 
    "keywords": [
      "covariant differentiation", 
      "field-theoretic viewpoint", 
      "Geometrization of electromagnetism", 
      "mathematical properties", 
      "Finsler geometry", 
      "symmetry II", 
      "physical curvature", 
      "Yang-Mills", 
      "scalar curvature", 
      "metric connection", 
      "homogeneity condition", 
      "Finsler", 
      "gauge geometry", 
      "point charges", 
      "geometry", 
      "geometrization", 
      "curvature", 
      "electromagnetism", 
      "Maxwell", 
      "tensor", 
      "gravity", 
      "theory", 
      "formula", 
      "properties", 
      "applications", 
      "connection", 
      "charge", 
      "viewpoint", 
      "conditions", 
      "important differences", 
      "presence", 
      "differences", 
      "differentiation"
    ], 
    "name": "Geometrization of electromagnetism and gravity based on a finsler space-time with gauge symmetry-II", 
    "pagination": "645-657", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002410014"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02728447"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02728447", 
      "https://app.dimensions.ai/details/publication/pub.1002410014"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_247.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02728447"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02728447'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02728447'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02728447'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02728447'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      60 URIs      50 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02728447 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2c2015b127ee402986b62b7d86105942
4 schema:citation sg:pub.10.1007/978-3-642-51610-8
5 sg:pub.10.1007/bf02874409
6 schema:datePublished 1994-06
7 schema:datePublishedReg 1994-06-01
8 schema:description We investigate further the application of Finsler space-time and its gauge geometry to Maxwell’s and Yang-Mills’ theories. An important difference between gauge geometry and the conventional Finsler geometry is discussed. A formula for the total gauge covariant differentiation is obtained. The consistent mathematical properties of the metric gauge tensor, the metric connections and homogeneity conditions for gauge covariant differentiations are discussed and clarified. We calculate scalar curvature in the presence of a point charge. The physical curvature of the Finsler space-time is discussed from the field-theoretic viewpoint.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N55a8d49dd4ef46088e9b146b59c24e83
12 Nae4f17fe4da747878898c726a4634f38
13 sg:journal.1336108
14 schema:keywords Finsler
15 Finsler geometry
16 Geometrization of electromagnetism
17 Maxwell
18 Yang-Mills
19 applications
20 charge
21 conditions
22 connection
23 covariant differentiation
24 curvature
25 differences
26 differentiation
27 electromagnetism
28 field-theoretic viewpoint
29 formula
30 gauge geometry
31 geometrization
32 geometry
33 gravity
34 homogeneity condition
35 important differences
36 mathematical properties
37 metric connection
38 physical curvature
39 point charges
40 presence
41 properties
42 scalar curvature
43 symmetry II
44 tensor
45 theory
46 viewpoint
47 schema:name Geometrization of electromagnetism and gravity based on a finsler space-time with gauge symmetry-II
48 schema:pagination 645-657
49 schema:productId N2c59838190f54d1ab7ec8dc0cdea0222
50 Nbdf479ecd8494948b2379d58edd8f125
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002410014
52 https://doi.org/10.1007/bf02728447
53 schema:sdDatePublished 2022-09-02T15:47
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N6dab3e0e00134999949eb8b482892478
56 schema:url https://doi.org/10.1007/bf02728447
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N2c2015b127ee402986b62b7d86105942 rdf:first sg:person.014301222742.62
61 rdf:rest rdf:nil
62 N2c59838190f54d1ab7ec8dc0cdea0222 schema:name dimensions_id
63 schema:value pub.1002410014
64 rdf:type schema:PropertyValue
65 N55a8d49dd4ef46088e9b146b59c24e83 schema:issueNumber 6
66 rdf:type schema:PublicationIssue
67 N6dab3e0e00134999949eb8b482892478 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nae4f17fe4da747878898c726a4634f38 schema:volumeNumber 109
70 rdf:type schema:PublicationVolume
71 Nbdf479ecd8494948b2379d58edd8f125 schema:name doi
72 schema:value 10.1007/bf02728447
73 rdf:type schema:PropertyValue
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1336108 schema:issn 1826-9877
81 schema:name Il Nuovo Cimento B (1971-1996)
82 schema:publisher Springer Nature
83 rdf:type schema:Periodical
84 sg:person.014301222742.62 schema:affiliation grid-institutes:grid.266686.a
85 schema:familyName Hsu
86 schema:givenName J. P.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301222742.62
88 rdf:type schema:Person
89 sg:pub.10.1007/978-3-642-51610-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029674939
90 https://doi.org/10.1007/978-3-642-51610-8
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf02874409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040227303
93 https://doi.org/10.1007/bf02874409
94 rdf:type schema:CreativeWork
95 grid-institutes:grid.266686.a schema:alternateName Physics Department, University of Massachusetts Dartmouth, 02747-2300, North Dartmouth, MA, USA
96 schema:name Physics Department, University of Massachusetts Dartmouth, 02747-2300, North Dartmouth, MA, USA
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...