Relevance of the statistical nature of the radiation to the time evolution of atomic variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1976-04

AUTHORS

H. P. Baltes, P. Meystre, A. Quattropani

ABSTRACT

We present the genral and rigorous equation of motion for the reduced density matrix (RDM) describing the time evolution of a systemA coupled to a systemB for any initial statistical state. We derive the corresponding perturbation expansion up to the second order in the interaction and discuss it for a variety of physical initial conditions. We apply the formalism to the interaction of radiation with matter in terms of a single-mode field coupled to a two-level atomic system through electric-dipole interaction. We solve the equations of motion for the dynamical variables describing the atomic system interacting with i) thermal and ii) coherent incident radiation or coupled to iii) a field produced by classical currents. We show that the «effective» semi-classical Hamiltonian can be established in the case ii), whereas the semi-classical approximation (SCA) is meaningless in the case i). We discuss the range of validity of the SCA in terms of the exactly solvable rotating-wave version of the dipole coupling. We report drastic deviations from the SCA results even in the limit of high intensity of the incident coherent field unless the coupling is very weak or the interaction time elapsed is very short. We analyse the relevance of the initial photon statistics by comparing the SCA with the exact RDM. We discuss the validity of the SCA for various spectroscopic techniques. More... »

PAGES

303-323

References to SciGraph publications

  • 1973-02. Destruction of coherence by scattering of radiation on atoms in LETTERE AL NUOVO CIMENTO (1971-1985)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02727641

    DOI

    http://dx.doi.org/10.1007/bf02727641

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040189957


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zentrale Forschung und Entwicklung, Landis and Gyr Zug A.G., CH-6300, Zug, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Zentrale Forschung und Entwicklung, Landis and Gyr Zug A.G., CH-6300, Zug, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baltes", 
            "givenName": "H. P.", 
            "id": "sg:person.0736632363.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736632363.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Optical Science Center, University of Arizona, 85721, Tucson, Ariz., USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Optical Science Center, University of Arizona, 85721, Tucson, Ariz., USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meystre", 
            "givenName": "P.", 
            "id": "sg:person.010042543335.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Physique Th\u00e9orique, Ecole Polytechnique F\u00e9d\u00e9rale, CH-1006, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Laboratoire de Physique Th\u00e9orique, Ecole Polytechnique F\u00e9d\u00e9rale, CH-1006, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quattropani", 
            "givenName": "A.", 
            "id": "sg:person.012337260034.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337260034.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02743631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033694898", 
              "https://doi.org/10.1007/bf02743631"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1976-04", 
        "datePublishedReg": "1976-04-01", 
        "description": "We present the genral and rigorous equation of motion for the reduced density matrix (RDM) describing the time evolution of a systemA coupled to a systemB for any initial statistical state. We derive the corresponding perturbation expansion up to the second order in the interaction and discuss it for a variety of physical initial conditions. We apply the formalism to the interaction of radiation with matter in terms of a single-mode field coupled to a two-level atomic system through electric-dipole interaction. We solve the equations of motion for the dynamical variables describing the atomic system interacting with i) thermal and ii) coherent incident radiation or coupled to iii) a field produced by classical currents. We show that the \u00abeffective\u00bb semi-classical Hamiltonian can be established in the case ii), whereas the semi-classical approximation (SCA) is meaningless in the case i). We discuss the range of validity of the SCA in terms of the exactly solvable rotating-wave version of the dipole coupling. We report drastic deviations from the SCA results even in the limit of high intensity of the incident coherent field unless the coupling is very weak or the interaction time elapsed is very short. We analyse the relevance of the initial photon statistics by comparing the SCA with the exact RDM. We discuss the validity of the SCA for various spectroscopic techniques.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf02727641", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336108", 
            "issn": [
              "1826-9877"
            ], 
            "name": "Il Nuovo Cimento B (1971-1996)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "semi-classical approximation", 
          "atomic system", 
          "two-level atomic system", 
          "single-mode field", 
          "time evolution", 
          "equations of motion", 
          "corresponding perturbation expansions", 
          "physical initial conditions", 
          "electric dipole interaction", 
          "interaction of radiation", 
          "range of validity", 
          "statistical state", 
          "dynamical variables", 
          "photon statistics", 
          "classical current", 
          "coherent field", 
          "atomic variables", 
          "statistical nature", 
          "density matrix", 
          "incident radiation", 
          "rigorous equations", 
          "perturbation expansion", 
          "dipole coupling", 
          "second order", 
          "initial conditions", 
          "interaction time", 
          "spectroscopic techniques", 
          "drastic deviations", 
          "radiation", 
          "equations", 
          "high intensity", 
          "coupling", 
          "motion", 
          "field", 
          "Case II", 
          "Hamiltonian", 
          "approximation", 
          "formalism", 
          "interaction", 
          "statistics", 
          "case I", 
          "variables", 
          "terms", 
          "validity", 
          "evolution", 
          "intensity", 
          "system", 
          "matrix", 
          "current", 
          "state", 
          "matter", 
          "RDM", 
          "limit", 
          "version", 
          "range", 
          "expansion", 
          "deviation", 
          "technique", 
          "order", 
          "Systema", 
          "nature", 
          "conditions", 
          "time", 
          "variety", 
          "relevance"
        ], 
        "name": "Relevance of the statistical nature of the radiation to the time evolution of atomic variables", 
        "pagination": "303-323", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040189957"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02727641"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02727641", 
          "https://app.dimensions.ai/details/publication/pub.1040189957"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_136.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf02727641"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02727641'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02727641'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02727641'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02727641'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      22 PREDICATES      92 URIs      83 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02727641 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N44f85600ff5642a78b14376bed09787a
    4 schema:citation sg:pub.10.1007/bf02743631
    5 schema:datePublished 1976-04
    6 schema:datePublishedReg 1976-04-01
    7 schema:description We present the genral and rigorous equation of motion for the reduced density matrix (RDM) describing the time evolution of a systemA coupled to a systemB for any initial statistical state. We derive the corresponding perturbation expansion up to the second order in the interaction and discuss it for a variety of physical initial conditions. We apply the formalism to the interaction of radiation with matter in terms of a single-mode field coupled to a two-level atomic system through electric-dipole interaction. We solve the equations of motion for the dynamical variables describing the atomic system interacting with i) thermal and ii) coherent incident radiation or coupled to iii) a field produced by classical currents. We show that the «effective» semi-classical Hamiltonian can be established in the case ii), whereas the semi-classical approximation (SCA) is meaningless in the case i). We discuss the range of validity of the SCA in terms of the exactly solvable rotating-wave version of the dipole coupling. We report drastic deviations from the SCA results even in the limit of high intensity of the incident coherent field unless the coupling is very weak or the interaction time elapsed is very short. We analyse the relevance of the initial photon statistics by comparing the SCA with the exact RDM. We discuss the validity of the SCA for various spectroscopic techniques.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N2161f7ecf42243c2aeac95d47acf96a8
    12 N4b3371b24fff48b695d883f36a026191
    13 sg:journal.1336108
    14 schema:keywords Case II
    15 Hamiltonian
    16 RDM
    17 Systema
    18 approximation
    19 atomic system
    20 atomic variables
    21 case I
    22 classical current
    23 coherent field
    24 conditions
    25 corresponding perturbation expansions
    26 coupling
    27 current
    28 density matrix
    29 deviation
    30 dipole coupling
    31 drastic deviations
    32 dynamical variables
    33 electric dipole interaction
    34 equations
    35 equations of motion
    36 evolution
    37 expansion
    38 field
    39 formalism
    40 high intensity
    41 incident radiation
    42 initial conditions
    43 intensity
    44 interaction
    45 interaction of radiation
    46 interaction time
    47 limit
    48 matrix
    49 matter
    50 motion
    51 nature
    52 order
    53 perturbation expansion
    54 photon statistics
    55 physical initial conditions
    56 radiation
    57 range
    58 range of validity
    59 relevance
    60 rigorous equations
    61 second order
    62 semi-classical approximation
    63 single-mode field
    64 spectroscopic techniques
    65 state
    66 statistical nature
    67 statistical state
    68 statistics
    69 system
    70 technique
    71 terms
    72 time
    73 time evolution
    74 two-level atomic system
    75 validity
    76 variables
    77 variety
    78 version
    79 schema:name Relevance of the statistical nature of the radiation to the time evolution of atomic variables
    80 schema:pagination 303-323
    81 schema:productId N0a1d446a91da443a9e17b1dc045e2585
    82 N6a8f700c48af4887b59a0dcba1c124b8
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040189957
    84 https://doi.org/10.1007/bf02727641
    85 schema:sdDatePublished 2022-05-10T09:39
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher N841953739a304ed9a2920af2fbeab574
    88 schema:url https://doi.org/10.1007/bf02727641
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N0a1d446a91da443a9e17b1dc045e2585 schema:name doi
    93 schema:value 10.1007/bf02727641
    94 rdf:type schema:PropertyValue
    95 N2161f7ecf42243c2aeac95d47acf96a8 schema:volumeNumber 32
    96 rdf:type schema:PublicationVolume
    97 N21d215aee7da443fb47e9c3379d4ee9d rdf:first sg:person.010042543335.11
    98 rdf:rest Nfa3ec629b8744e5085832e9ed9e4db4f
    99 N44f85600ff5642a78b14376bed09787a rdf:first sg:person.0736632363.32
    100 rdf:rest N21d215aee7da443fb47e9c3379d4ee9d
    101 N4b3371b24fff48b695d883f36a026191 schema:issueNumber 2
    102 rdf:type schema:PublicationIssue
    103 N6a8f700c48af4887b59a0dcba1c124b8 schema:name dimensions_id
    104 schema:value pub.1040189957
    105 rdf:type schema:PropertyValue
    106 N841953739a304ed9a2920af2fbeab574 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Nfa3ec629b8744e5085832e9ed9e4db4f rdf:first sg:person.012337260034.33
    109 rdf:rest rdf:nil
    110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Physical Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Other Physical Sciences
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1336108 schema:issn 1826-9877
    117 schema:name Il Nuovo Cimento B (1971-1996)
    118 schema:publisher Springer Nature
    119 rdf:type schema:Periodical
    120 sg:person.010042543335.11 schema:affiliation grid-institutes:grid.134563.6
    121 schema:familyName Meystre
    122 schema:givenName P.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11
    124 rdf:type schema:Person
    125 sg:person.012337260034.33 schema:affiliation grid-institutes:grid.5333.6
    126 schema:familyName Quattropani
    127 schema:givenName A.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337260034.33
    129 rdf:type schema:Person
    130 sg:person.0736632363.32 schema:affiliation grid-institutes:None
    131 schema:familyName Baltes
    132 schema:givenName H. P.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736632363.32
    134 rdf:type schema:Person
    135 sg:pub.10.1007/bf02743631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033694898
    136 https://doi.org/10.1007/bf02743631
    137 rdf:type schema:CreativeWork
    138 grid-institutes:None schema:alternateName Zentrale Forschung und Entwicklung, Landis and Gyr Zug A.G., CH-6300, Zug, Switzerland
    139 schema:name Zentrale Forschung und Entwicklung, Landis and Gyr Zug A.G., CH-6300, Zug, Switzerland
    140 rdf:type schema:Organization
    141 grid-institutes:grid.134563.6 schema:alternateName Optical Science Center, University of Arizona, 85721, Tucson, Ariz., USA
    142 schema:name Optical Science Center, University of Arizona, 85721, Tucson, Ariz., USA
    143 rdf:type schema:Organization
    144 grid-institutes:grid.5333.6 schema:alternateName Laboratoire de Physique Théorique, Ecole Polytechnique Fédérale, CH-1006, Lausanne, Switzerland
    145 schema:name Laboratoire de Physique Théorique, Ecole Polytechnique Fédérale, CH-1006, Lausanne, Switzerland
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...