Ontology type: schema:ScholarlyArticle
1976-04
AUTHORSH. P. Baltes, P. Meystre, A. Quattropani
ABSTRACTWe present the genral and rigorous equation of motion for the reduced density matrix (RDM) describing the time evolution of a systemA coupled to a systemB for any initial statistical state. We derive the corresponding perturbation expansion up to the second order in the interaction and discuss it for a variety of physical initial conditions. We apply the formalism to the interaction of radiation with matter in terms of a single-mode field coupled to a two-level atomic system through electric-dipole interaction. We solve the equations of motion for the dynamical variables describing the atomic system interacting with i) thermal and ii) coherent incident radiation or coupled to iii) a field produced by classical currents. We show that the «effective» semi-classical Hamiltonian can be established in the case ii), whereas the semi-classical approximation (SCA) is meaningless in the case i). We discuss the range of validity of the SCA in terms of the exactly solvable rotating-wave version of the dipole coupling. We report drastic deviations from the SCA results even in the limit of high intensity of the incident coherent field unless the coupling is very weak or the interaction time elapsed is very short. We analyse the relevance of the initial photon statistics by comparing the SCA with the exact RDM. We discuss the validity of the SCA for various spectroscopic techniques. More... »
PAGES303-323
http://scigraph.springernature.com/pub.10.1007/bf02727641
DOIhttp://dx.doi.org/10.1007/bf02727641
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040189957
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Zentrale Forschung und Entwicklung, Landis and Gyr Zug A.G., CH-6300, Zug, Switzerland",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Zentrale Forschung und Entwicklung, Landis and Gyr Zug A.G., CH-6300, Zug, Switzerland"
],
"type": "Organization"
},
"familyName": "Baltes",
"givenName": "H. P.",
"id": "sg:person.0736632363.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736632363.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Optical Science Center, University of Arizona, 85721, Tucson, Ariz., USA",
"id": "http://www.grid.ac/institutes/grid.134563.6",
"name": [
"Optical Science Center, University of Arizona, 85721, Tucson, Ariz., USA"
],
"type": "Organization"
},
"familyName": "Meystre",
"givenName": "P.",
"id": "sg:person.010042543335.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Physique Th\u00e9orique, Ecole Polytechnique F\u00e9d\u00e9rale, CH-1006, Lausanne, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5333.6",
"name": [
"Laboratoire de Physique Th\u00e9orique, Ecole Polytechnique F\u00e9d\u00e9rale, CH-1006, Lausanne, Switzerland"
],
"type": "Organization"
},
"familyName": "Quattropani",
"givenName": "A.",
"id": "sg:person.012337260034.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337260034.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02743631",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033694898",
"https://doi.org/10.1007/bf02743631"
],
"type": "CreativeWork"
}
],
"datePublished": "1976-04",
"datePublishedReg": "1976-04-01",
"description": "We present the genral and rigorous equation of motion for the reduced density matrix (RDM) describing the time evolution of a systemA coupled to a systemB for any initial statistical state. We derive the corresponding perturbation expansion up to the second order in the interaction and discuss it for a variety of physical initial conditions. We apply the formalism to the interaction of radiation with matter in terms of a single-mode field coupled to a two-level atomic system through electric-dipole interaction. We solve the equations of motion for the dynamical variables describing the atomic system interacting with i) thermal and ii) coherent incident radiation or coupled to iii) a field produced by classical currents. We show that the \u00abeffective\u00bb semi-classical Hamiltonian can be established in the case ii), whereas the semi-classical approximation (SCA) is meaningless in the case i). We discuss the range of validity of the SCA in terms of the exactly solvable rotating-wave version of the dipole coupling. We report drastic deviations from the SCA results even in the limit of high intensity of the incident coherent field unless the coupling is very weak or the interaction time elapsed is very short. We analyse the relevance of the initial photon statistics by comparing the SCA with the exact RDM. We discuss the validity of the SCA for various spectroscopic techniques.",
"genre": "article",
"id": "sg:pub.10.1007/bf02727641",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1336108",
"issn": [
"1826-9877"
],
"name": "Il Nuovo Cimento B (1971-1996)",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "32"
}
],
"keywords": [
"semi-classical approximation",
"atomic system",
"two-level atomic system",
"single-mode field",
"time evolution",
"equations of motion",
"corresponding perturbation expansions",
"physical initial conditions",
"electric dipole interaction",
"interaction of radiation",
"range of validity",
"statistical state",
"dynamical variables",
"photon statistics",
"classical current",
"coherent field",
"atomic variables",
"statistical nature",
"density matrix",
"incident radiation",
"rigorous equations",
"perturbation expansion",
"dipole coupling",
"second order",
"initial conditions",
"interaction time",
"spectroscopic techniques",
"drastic deviations",
"radiation",
"equations",
"high intensity",
"coupling",
"motion",
"field",
"Case II",
"Hamiltonian",
"approximation",
"formalism",
"interaction",
"statistics",
"case I",
"variables",
"terms",
"validity",
"evolution",
"intensity",
"system",
"matrix",
"current",
"state",
"matter",
"RDM",
"limit",
"version",
"range",
"expansion",
"deviation",
"technique",
"order",
"Systema",
"nature",
"conditions",
"time",
"variety",
"relevance"
],
"name": "Relevance of the statistical nature of the radiation to the time evolution of atomic variables",
"pagination": "303-323",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040189957"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf02727641"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf02727641",
"https://app.dimensions.ai/details/publication/pub.1040189957"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_136.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf02727641"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02727641'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02727641'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02727641'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02727641'
This table displays all metadata directly associated to this object as RDF triples.
146 TRIPLES
22 PREDICATES
92 URIs
83 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf02727641 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N44f85600ff5642a78b14376bed09787a |
4 | ″ | schema:citation | sg:pub.10.1007/bf02743631 |
5 | ″ | schema:datePublished | 1976-04 |
6 | ″ | schema:datePublishedReg | 1976-04-01 |
7 | ″ | schema:description | We present the genral and rigorous equation of motion for the reduced density matrix (RDM) describing the time evolution of a systemA coupled to a systemB for any initial statistical state. We derive the corresponding perturbation expansion up to the second order in the interaction and discuss it for a variety of physical initial conditions. We apply the formalism to the interaction of radiation with matter in terms of a single-mode field coupled to a two-level atomic system through electric-dipole interaction. We solve the equations of motion for the dynamical variables describing the atomic system interacting with i) thermal and ii) coherent incident radiation or coupled to iii) a field produced by classical currents. We show that the «effective» semi-classical Hamiltonian can be established in the case ii), whereas the semi-classical approximation (SCA) is meaningless in the case i). We discuss the range of validity of the SCA in terms of the exactly solvable rotating-wave version of the dipole coupling. We report drastic deviations from the SCA results even in the limit of high intensity of the incident coherent field unless the coupling is very weak or the interaction time elapsed is very short. We analyse the relevance of the initial photon statistics by comparing the SCA with the exact RDM. We discuss the validity of the SCA for various spectroscopic techniques. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N2161f7ecf42243c2aeac95d47acf96a8 |
12 | ″ | ″ | N4b3371b24fff48b695d883f36a026191 |
13 | ″ | ″ | sg:journal.1336108 |
14 | ″ | schema:keywords | Case II |
15 | ″ | ″ | Hamiltonian |
16 | ″ | ″ | RDM |
17 | ″ | ″ | Systema |
18 | ″ | ″ | approximation |
19 | ″ | ″ | atomic system |
20 | ″ | ″ | atomic variables |
21 | ″ | ″ | case I |
22 | ″ | ″ | classical current |
23 | ″ | ″ | coherent field |
24 | ″ | ″ | conditions |
25 | ″ | ″ | corresponding perturbation expansions |
26 | ″ | ″ | coupling |
27 | ″ | ″ | current |
28 | ″ | ″ | density matrix |
29 | ″ | ″ | deviation |
30 | ″ | ″ | dipole coupling |
31 | ″ | ″ | drastic deviations |
32 | ″ | ″ | dynamical variables |
33 | ″ | ″ | electric dipole interaction |
34 | ″ | ″ | equations |
35 | ″ | ″ | equations of motion |
36 | ″ | ″ | evolution |
37 | ″ | ″ | expansion |
38 | ″ | ″ | field |
39 | ″ | ″ | formalism |
40 | ″ | ″ | high intensity |
41 | ″ | ″ | incident radiation |
42 | ″ | ″ | initial conditions |
43 | ″ | ″ | intensity |
44 | ″ | ″ | interaction |
45 | ″ | ″ | interaction of radiation |
46 | ″ | ″ | interaction time |
47 | ″ | ″ | limit |
48 | ″ | ″ | matrix |
49 | ″ | ″ | matter |
50 | ″ | ″ | motion |
51 | ″ | ″ | nature |
52 | ″ | ″ | order |
53 | ″ | ″ | perturbation expansion |
54 | ″ | ″ | photon statistics |
55 | ″ | ″ | physical initial conditions |
56 | ″ | ″ | radiation |
57 | ″ | ″ | range |
58 | ″ | ″ | range of validity |
59 | ″ | ″ | relevance |
60 | ″ | ″ | rigorous equations |
61 | ″ | ″ | second order |
62 | ″ | ″ | semi-classical approximation |
63 | ″ | ″ | single-mode field |
64 | ″ | ″ | spectroscopic techniques |
65 | ″ | ″ | state |
66 | ″ | ″ | statistical nature |
67 | ″ | ″ | statistical state |
68 | ″ | ″ | statistics |
69 | ″ | ″ | system |
70 | ″ | ″ | technique |
71 | ″ | ″ | terms |
72 | ″ | ″ | time |
73 | ″ | ″ | time evolution |
74 | ″ | ″ | two-level atomic system |
75 | ″ | ″ | validity |
76 | ″ | ″ | variables |
77 | ″ | ″ | variety |
78 | ″ | ″ | version |
79 | ″ | schema:name | Relevance of the statistical nature of the radiation to the time evolution of atomic variables |
80 | ″ | schema:pagination | 303-323 |
81 | ″ | schema:productId | N0a1d446a91da443a9e17b1dc045e2585 |
82 | ″ | ″ | N6a8f700c48af4887b59a0dcba1c124b8 |
83 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040189957 |
84 | ″ | ″ | https://doi.org/10.1007/bf02727641 |
85 | ″ | schema:sdDatePublished | 2022-05-10T09:39 |
86 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
87 | ″ | schema:sdPublisher | N841953739a304ed9a2920af2fbeab574 |
88 | ″ | schema:url | https://doi.org/10.1007/bf02727641 |
89 | ″ | sgo:license | sg:explorer/license/ |
90 | ″ | sgo:sdDataset | articles |
91 | ″ | rdf:type | schema:ScholarlyArticle |
92 | N0a1d446a91da443a9e17b1dc045e2585 | schema:name | doi |
93 | ″ | schema:value | 10.1007/bf02727641 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | N2161f7ecf42243c2aeac95d47acf96a8 | schema:volumeNumber | 32 |
96 | ″ | rdf:type | schema:PublicationVolume |
97 | N21d215aee7da443fb47e9c3379d4ee9d | rdf:first | sg:person.010042543335.11 |
98 | ″ | rdf:rest | Nfa3ec629b8744e5085832e9ed9e4db4f |
99 | N44f85600ff5642a78b14376bed09787a | rdf:first | sg:person.0736632363.32 |
100 | ″ | rdf:rest | N21d215aee7da443fb47e9c3379d4ee9d |
101 | N4b3371b24fff48b695d883f36a026191 | schema:issueNumber | 2 |
102 | ″ | rdf:type | schema:PublicationIssue |
103 | N6a8f700c48af4887b59a0dcba1c124b8 | schema:name | dimensions_id |
104 | ″ | schema:value | pub.1040189957 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | N841953739a304ed9a2920af2fbeab574 | schema:name | Springer Nature - SN SciGraph project |
107 | ″ | rdf:type | schema:Organization |
108 | Nfa3ec629b8744e5085832e9ed9e4db4f | rdf:first | sg:person.012337260034.33 |
109 | ″ | rdf:rest | rdf:nil |
110 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Physical Sciences |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Other Physical Sciences |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:journal.1336108 | schema:issn | 1826-9877 |
117 | ″ | schema:name | Il Nuovo Cimento B (1971-1996) |
118 | ″ | schema:publisher | Springer Nature |
119 | ″ | rdf:type | schema:Periodical |
120 | sg:person.010042543335.11 | schema:affiliation | grid-institutes:grid.134563.6 |
121 | ″ | schema:familyName | Meystre |
122 | ″ | schema:givenName | P. |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.012337260034.33 | schema:affiliation | grid-institutes:grid.5333.6 |
126 | ″ | schema:familyName | Quattropani |
127 | ″ | schema:givenName | A. |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337260034.33 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.0736632363.32 | schema:affiliation | grid-institutes:None |
131 | ″ | schema:familyName | Baltes |
132 | ″ | schema:givenName | H. P. |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736632363.32 |
134 | ″ | rdf:type | schema:Person |
135 | sg:pub.10.1007/bf02743631 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033694898 |
136 | ″ | ″ | https://doi.org/10.1007/bf02743631 |
137 | ″ | rdf:type | schema:CreativeWork |
138 | grid-institutes:None | schema:alternateName | Zentrale Forschung und Entwicklung, Landis and Gyr Zug A.G., CH-6300, Zug, Switzerland |
139 | ″ | schema:name | Zentrale Forschung und Entwicklung, Landis and Gyr Zug A.G., CH-6300, Zug, Switzerland |
140 | ″ | rdf:type | schema:Organization |
141 | grid-institutes:grid.134563.6 | schema:alternateName | Optical Science Center, University of Arizona, 85721, Tucson, Ariz., USA |
142 | ″ | schema:name | Optical Science Center, University of Arizona, 85721, Tucson, Ariz., USA |
143 | ″ | rdf:type | schema:Organization |
144 | grid-institutes:grid.5333.6 | schema:alternateName | Laboratoire de Physique Théorique, Ecole Polytechnique Fédérale, CH-1006, Lausanne, Switzerland |
145 | ″ | schema:name | Laboratoire de Physique Théorique, Ecole Polytechnique Fédérale, CH-1006, Lausanne, Switzerland |
146 | ″ | rdf:type | schema:Organization |