Classical perturbation theory for systems of weakly coupled rotators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-10

AUTHORS

G. Benettin, L. Galgani, A. Giorgilli

ABSTRACT

We show how to construct a classical perturbation theory at any finite order for an Hamiltonian system describing a chain of weakly coupled rotators, both for the nonresonant and for the resonant cases. In particular, by means of a suitable algebraic scheme, we show how small denominantors and propagation of harmonics can be controlled. More... »

PAGES

89-102

References to SciGraph publications

  • 1983. The Elements of Mechanics in NONE
  • 1978-04. Formal integrals for an autonomous Hamiltonian system near an equilibrium point in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1969-03. Canonical transformations depending on a small parameter in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02723539

    DOI

    http://dx.doi.org/10.1007/bf02723539

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030151468


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Dipartimento di Fisica dell\u2019Universit\u00e0, Padova", 
                "Gruppo Nazionale di Struttura della Materia del C.N.R., Unit\u00e0 di Padova, Via Marzolo 8, Padova, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benettin", 
            "givenName": "G.", 
            "id": "sg:person.014313317357.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Dipartimento di Matematica dell\u2019Universit\u00e0, Via Saldini 50, Milano, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Galgani", 
            "givenName": "L.", 
            "id": "sg:person.010346707747.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Dipartimento di Fisica dell\u2019Universit\u00e0, Via Celoria 16, Milano, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giorgilli", 
            "givenName": "A.", 
            "id": "sg:person.010532704656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-662-00731-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010269505", 
              "https://doi.org/10.1007/978-3-662-00731-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-00731-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010269505", 
              "https://doi.org/10.1007/978-3-662-00731-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028824895", 
              "https://doi.org/10.1007/bf01232832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028824895", 
              "https://doi.org/10.1007/bf01232832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1963v018n06abeh001143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058193727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1977v032n06abeh003859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058194264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/coll/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098741864"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-10", 
        "datePublishedReg": "1985-10-01", 
        "description": "We show how to construct a classical perturbation theory at any finite order for an Hamiltonian system describing a chain of weakly coupled rotators, both for the nonresonant and for the resonant cases. In particular, by means of a suitable algebraic scheme, we show how small denominantors and propagation of harmonics can be controlled.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02723539", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336108", 
            "issn": [
              "1826-9877"
            ], 
            "name": "Il Nuovo Cimento B (1971-1996)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "89"
          }
        ], 
        "name": "Classical perturbation theory for systems of weakly coupled rotators", 
        "pagination": "89-102", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8fa366c0acfbf90c497834833f3929e828daf397dc92bb465fcb7ca2f1542646"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02723539"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030151468"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02723539", 
          "https://app.dimensions.ai/details/publication/pub.1030151468"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000481.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02723539"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02723539'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02723539'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02723539'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02723539'


     

    This table displays all metadata directly associated to this object as RDF triples.

    99 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02723539 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf2fed3e12a394af880fb21d34b67696c
    4 schema:citation sg:pub.10.1007/978-3-662-00731-0
    5 sg:pub.10.1007/bf01230629
    6 sg:pub.10.1007/bf01232832
    7 https://doi.org/10.1070/rm1963v018n06abeh001143
    8 https://doi.org/10.1070/rm1977v032n06abeh003859
    9 https://doi.org/10.1090/coll/009
    10 schema:datePublished 1985-10
    11 schema:datePublishedReg 1985-10-01
    12 schema:description We show how to construct a classical perturbation theory at any finite order for an Hamiltonian system describing a chain of weakly coupled rotators, both for the nonresonant and for the resonant cases. In particular, by means of a suitable algebraic scheme, we show how small denominantors and propagation of harmonics can be controlled.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N347e52bd15a14c8ab5921f7dbd9276a8
    17 Nbd1c263a98754611a39cef1e470af007
    18 sg:journal.1336108
    19 schema:name Classical perturbation theory for systems of weakly coupled rotators
    20 schema:pagination 89-102
    21 schema:productId N7b823dab88254183a1f6ca0cf0db9f32
    22 Nce0fde33744642b58b3317ff00532eca
    23 Neb6dd618e3294062bdeb5e8f52d017f7
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030151468
    25 https://doi.org/10.1007/bf02723539
    26 schema:sdDatePublished 2019-04-11T01:52
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N65a0ad51f340446881192eaa41569ec1
    29 schema:url http://link.springer.com/10.1007/BF02723539
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N347e52bd15a14c8ab5921f7dbd9276a8 schema:volumeNumber 89
    34 rdf:type schema:PublicationVolume
    35 N3711ba83366c43a2b9d5a83622e628e1 schema:name Dipartimento di Fisica dell’Università, Via Celoria 16, Milano, Italia
    36 rdf:type schema:Organization
    37 N65a0ad51f340446881192eaa41569ec1 schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 N722229987dd540a5846acb7719dc3953 schema:name Dipartimento di Fisica dell’Università, Padova
    40 Gruppo Nazionale di Struttura della Materia del C.N.R., Unità di Padova, Via Marzolo 8, Padova, Italia
    41 rdf:type schema:Organization
    42 N7b823dab88254183a1f6ca0cf0db9f32 schema:name readcube_id
    43 schema:value 8fa366c0acfbf90c497834833f3929e828daf397dc92bb465fcb7ca2f1542646
    44 rdf:type schema:PropertyValue
    45 N8287654030d54b6e8099e3e4ba5ced76 rdf:first sg:person.010346707747.76
    46 rdf:rest Nc5aaff0fcc01462d9e678d4fb1981134
    47 Nbd1c263a98754611a39cef1e470af007 schema:issueNumber 2
    48 rdf:type schema:PublicationIssue
    49 Nc5aaff0fcc01462d9e678d4fb1981134 rdf:first sg:person.010532704656.30
    50 rdf:rest rdf:nil
    51 Nce0fde33744642b58b3317ff00532eca schema:name dimensions_id
    52 schema:value pub.1030151468
    53 rdf:type schema:PropertyValue
    54 Ne140504769084f9d906bab3bfcadf93d schema:name Dipartimento di Matematica dell’Università, Via Saldini 50, Milano, Italia
    55 rdf:type schema:Organization
    56 Neb6dd618e3294062bdeb5e8f52d017f7 schema:name doi
    57 schema:value 10.1007/bf02723539
    58 rdf:type schema:PropertyValue
    59 Nf2fed3e12a394af880fb21d34b67696c rdf:first sg:person.014313317357.52
    60 rdf:rest N8287654030d54b6e8099e3e4ba5ced76
    61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Mathematical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Pure Mathematics
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1336108 schema:issn 1826-9877
    68 schema:name Il Nuovo Cimento B (1971-1996)
    69 rdf:type schema:Periodical
    70 sg:person.010346707747.76 schema:affiliation Ne140504769084f9d906bab3bfcadf93d
    71 schema:familyName Galgani
    72 schema:givenName L.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76
    74 rdf:type schema:Person
    75 sg:person.010532704656.30 schema:affiliation N3711ba83366c43a2b9d5a83622e628e1
    76 schema:familyName Giorgilli
    77 schema:givenName A.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
    79 rdf:type schema:Person
    80 sg:person.014313317357.52 schema:affiliation N722229987dd540a5846acb7719dc3953
    81 schema:familyName Benettin
    82 schema:givenName G.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52
    84 rdf:type schema:Person
    85 sg:pub.10.1007/978-3-662-00731-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010269505
    86 https://doi.org/10.1007/978-3-662-00731-0
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf01230629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
    89 https://doi.org/10.1007/bf01230629
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf01232832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028824895
    92 https://doi.org/10.1007/bf01232832
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1070/rm1963v018n06abeh001143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193727
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1070/rm1977v032n06abeh003859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194264
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1090/coll/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741864
    99 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...