Classical perturbation theory for systems of weakly coupled rotators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-10

AUTHORS

G. Benettin, L. Galgani, A. Giorgilli

ABSTRACT

We show how to construct a classical perturbation theory at any finite order for an Hamiltonian system describing a chain of weakly coupled rotators, both for the nonresonant and for the resonant cases. In particular, by means of a suitable algebraic scheme, we show how small denominantors and propagation of harmonics can be controlled. More... »

PAGES

89-102

References to SciGraph publications

  • 1983. The Elements of Mechanics in NONE
  • 1978-04. Formal integrals for an autonomous Hamiltonian system near an equilibrium point in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1969-03. Canonical transformations depending on a small parameter in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02723539

    DOI

    http://dx.doi.org/10.1007/bf02723539

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030151468


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Dipartimento di Fisica dell\u2019Universit\u00e0, Padova", 
                "Gruppo Nazionale di Struttura della Materia del C.N.R., Unit\u00e0 di Padova, Via Marzolo 8, Padova, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benettin", 
            "givenName": "G.", 
            "id": "sg:person.014313317357.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Dipartimento di Matematica dell\u2019Universit\u00e0, Via Saldini 50, Milano, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Galgani", 
            "givenName": "L.", 
            "id": "sg:person.010346707747.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Dipartimento di Fisica dell\u2019Universit\u00e0, Via Celoria 16, Milano, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giorgilli", 
            "givenName": "A.", 
            "id": "sg:person.010532704656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-662-00731-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010269505", 
              "https://doi.org/10.1007/978-3-662-00731-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-00731-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010269505", 
              "https://doi.org/10.1007/978-3-662-00731-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028824895", 
              "https://doi.org/10.1007/bf01232832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028824895", 
              "https://doi.org/10.1007/bf01232832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1963v018n06abeh001143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058193727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1977v032n06abeh003859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058194264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/coll/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098741864"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-10", 
        "datePublishedReg": "1985-10-01", 
        "description": "We show how to construct a classical perturbation theory at any finite order for an Hamiltonian system describing a chain of weakly coupled rotators, both for the nonresonant and for the resonant cases. In particular, by means of a suitable algebraic scheme, we show how small denominantors and propagation of harmonics can be controlled.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02723539", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1336108", 
            "issn": [
              "1826-9877"
            ], 
            "name": "Il Nuovo Cimento B (1971-1996)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "89"
          }
        ], 
        "name": "Classical perturbation theory for systems of weakly coupled rotators", 
        "pagination": "89-102", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8fa366c0acfbf90c497834833f3929e828daf397dc92bb465fcb7ca2f1542646"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02723539"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030151468"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02723539", 
          "https://app.dimensions.ai/details/publication/pub.1030151468"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000481.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02723539"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02723539'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02723539'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02723539'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02723539'


     

    This table displays all metadata directly associated to this object as RDF triples.

    99 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02723539 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N184e1c023ef2467082da93905d2da81c
    4 schema:citation sg:pub.10.1007/978-3-662-00731-0
    5 sg:pub.10.1007/bf01230629
    6 sg:pub.10.1007/bf01232832
    7 https://doi.org/10.1070/rm1963v018n06abeh001143
    8 https://doi.org/10.1070/rm1977v032n06abeh003859
    9 https://doi.org/10.1090/coll/009
    10 schema:datePublished 1985-10
    11 schema:datePublishedReg 1985-10-01
    12 schema:description We show how to construct a classical perturbation theory at any finite order for an Hamiltonian system describing a chain of weakly coupled rotators, both for the nonresonant and for the resonant cases. In particular, by means of a suitable algebraic scheme, we show how small denominantors and propagation of harmonics can be controlled.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N2201292fb4674a728aff7aa393445632
    17 N8740913eb58b426dabe7a872d74f3b99
    18 sg:journal.1336108
    19 schema:name Classical perturbation theory for systems of weakly coupled rotators
    20 schema:pagination 89-102
    21 schema:productId N18b86348840c4798abe7df3228c2bcb7
    22 Na18584faf6324751af46424db56c0b00
    23 Nc89a50fd38f742779eaf6c78fce036c5
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030151468
    25 https://doi.org/10.1007/bf02723539
    26 schema:sdDatePublished 2019-04-11T01:52
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N2e401813c8394a63940b64ad6698e0b6
    29 schema:url http://link.springer.com/10.1007/BF02723539
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N184e1c023ef2467082da93905d2da81c rdf:first sg:person.014313317357.52
    34 rdf:rest Nbc4135296039470c8b77081501b61e32
    35 N18b86348840c4798abe7df3228c2bcb7 schema:name dimensions_id
    36 schema:value pub.1030151468
    37 rdf:type schema:PropertyValue
    38 N2201292fb4674a728aff7aa393445632 schema:issueNumber 2
    39 rdf:type schema:PublicationIssue
    40 N2e401813c8394a63940b64ad6698e0b6 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N5d822582d8024fc5aac6c2f8754aa748 schema:name Dipartimento di Fisica dell’Università, Padova
    43 Gruppo Nazionale di Struttura della Materia del C.N.R., Unità di Padova, Via Marzolo 8, Padova, Italia
    44 rdf:type schema:Organization
    45 N8740913eb58b426dabe7a872d74f3b99 schema:volumeNumber 89
    46 rdf:type schema:PublicationVolume
    47 N97b477aeb7be4105a164abf9e93701f3 rdf:first sg:person.010532704656.30
    48 rdf:rest rdf:nil
    49 Na18584faf6324751af46424db56c0b00 schema:name readcube_id
    50 schema:value 8fa366c0acfbf90c497834833f3929e828daf397dc92bb465fcb7ca2f1542646
    51 rdf:type schema:PropertyValue
    52 Nbc4135296039470c8b77081501b61e32 rdf:first sg:person.010346707747.76
    53 rdf:rest N97b477aeb7be4105a164abf9e93701f3
    54 Nc89a50fd38f742779eaf6c78fce036c5 schema:name doi
    55 schema:value 10.1007/bf02723539
    56 rdf:type schema:PropertyValue
    57 Ne890afea9f5843ef8e497c7d45d1eda2 schema:name Dipartimento di Fisica dell’Università, Via Celoria 16, Milano, Italia
    58 rdf:type schema:Organization
    59 Nec722aec10b94629b36356a623f397e0 schema:name Dipartimento di Matematica dell’Università, Via Saldini 50, Milano, Italia
    60 rdf:type schema:Organization
    61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Mathematical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Pure Mathematics
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1336108 schema:issn 1826-9877
    68 schema:name Il Nuovo Cimento B (1971-1996)
    69 rdf:type schema:Periodical
    70 sg:person.010346707747.76 schema:affiliation Nec722aec10b94629b36356a623f397e0
    71 schema:familyName Galgani
    72 schema:givenName L.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76
    74 rdf:type schema:Person
    75 sg:person.010532704656.30 schema:affiliation Ne890afea9f5843ef8e497c7d45d1eda2
    76 schema:familyName Giorgilli
    77 schema:givenName A.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
    79 rdf:type schema:Person
    80 sg:person.014313317357.52 schema:affiliation N5d822582d8024fc5aac6c2f8754aa748
    81 schema:familyName Benettin
    82 schema:givenName G.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52
    84 rdf:type schema:Person
    85 sg:pub.10.1007/978-3-662-00731-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010269505
    86 https://doi.org/10.1007/978-3-662-00731-0
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf01230629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
    89 https://doi.org/10.1007/bf01230629
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf01232832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028824895
    92 https://doi.org/10.1007/bf01232832
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1070/rm1963v018n06abeh001143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193727
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1070/rm1977v032n06abeh003859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194264
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1090/coll/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741864
    99 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...