Families of sum rules from current algebra View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1967-10

AUTHORS

D. Amati, R. Jengo, E. Remiddi

ABSTRACT

By making use of a simple method we obtain different families of sum rules from current algebra. The method allows to understand the relation of the reference frame in which equal-time commutators are considered with the form of the sum rules obtained and dispersion relations. The different contributions to the sum rules are then analysed and it is recognized that besides the contributions which are generally considered, there are others which come from disconnected intermediate states, which play an important role. By discussing in detail theP→∞ sum rule we put in evidence the physical content of these extra terms and how they are responsible for the automatic cancellation of the singularities in the variables which, due to the locality of equal-time commutators, do not appear in the right-hand side of the sum rules. The origin and value of these terms is purely dynamical, they have nothing to do with Schwinger terms and their presence is not related to convergence of the sum rule integrals. It is shown that theassumption that they vanish (so to recover the Fubini sum rule for theP→∞ family) implies superconvergence so that it appears clearly that superconvergence is a purely dynamical assumption and is not related to current algebra or locality of equal-time commutators. The structure of other families of sum rules is also discussed and, in particular, that corresponding to the “Δ→∞” family which appears to be of particular interest. More... »

PAGES

999-1020

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02721768

DOI

http://dx.doi.org/10.1007/bf02721768

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030070872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Organization for Nuclear Research", 
          "id": "https://www.grid.ac/institutes/grid.9132.9", 
          "name": [
            "Cern, Geneva"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amati", 
        "givenName": "D.", 
        "id": "sg:person.010524743157.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524743157.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trieste", 
          "id": "https://www.grid.ac/institutes/grid.5133.4", 
          "name": [
            "Istituto di Fisica Teorica dell\u2019Universit\u00e0, Trieste"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jengo", 
        "givenName": "R.", 
        "id": "sg:person.010513643461.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513643461.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Organization for Nuclear Research", 
          "id": "https://www.grid.ac/institutes/grid.9132.9", 
          "name": [
            "Cern, Geneva"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Remiddi", 
        "givenName": "E.", 
        "id": "sg:person.016167622131.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167622131.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0031-9163(66)90702-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003768428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9163(66)90702-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003768428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02752873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012359320", 
          "https://doi.org/10.1007/bf02752873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02721129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016573634", 
          "https://doi.org/10.1007/bf02721129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02721129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016573634", 
          "https://doi.org/10.1007/bf02721129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(67)90361-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045879050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(67)90361-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045879050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(66)90310-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046223014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(66)90310-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046223014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03026454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054504917", 
          "https://doi.org/10.1007/bf03026454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03026454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054504917", 
          "https://doi.org/10.1007/bf03026454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physicsphysiquefizika.1.229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101010396"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1967-10", 
    "datePublishedReg": "1967-10-01", 
    "description": "By making use of a simple method we obtain different families of sum rules from current algebra. The method allows to understand the relation of the reference frame in which equal-time commutators are considered with the form of the sum rules obtained and dispersion relations. The different contributions to the sum rules are then analysed and it is recognized that besides the contributions which are generally considered, there are others which come from disconnected intermediate states, which play an important role. By discussing in detail theP\u2192\u221e sum rule we put in evidence the physical content of these extra terms and how they are responsible for the automatic cancellation of the singularities in the variables which, due to the locality of equal-time commutators, do not appear in the right-hand side of the sum rules. The origin and value of these terms is purely dynamical, they have nothing to do with Schwinger terms and their presence is not related to convergence of the sum rule integrals. It is shown that theassumption that they vanish (so to recover the Fubini sum rule for theP\u2192\u221e family) implies superconvergence so that it appears clearly that superconvergence is a purely dynamical assumption and is not related to current algebra or locality of equal-time commutators. The structure of other families of sum rules is also discussed and, in particular, that corresponding to the \u201c\u0394\u2192\u221e\u201d family which appears to be of particular interest.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02721768", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1328730", 
        "issn": [
          "0369-3546", 
          "1826-9869"
        ], 
        "name": "Il Nuovo Cimento A (1965-1970)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Families of sum rules from current algebra", 
    "pagination": "999-1020", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8f4169ace2f493818992c74dcf250cf873a18800d0cd26b15bc82106fc3e3bfc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02721768"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030070872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02721768", 
      "https://app.dimensions.ai/details/publication/pub.1030070872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02721768"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02721768'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02721768'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02721768'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02721768'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02721768 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1e4b3afa911045ed9d0564d47fb90fd6
4 schema:citation sg:pub.10.1007/bf02721129
5 sg:pub.10.1007/bf02752873
6 sg:pub.10.1007/bf03026454
7 https://doi.org/10.1016/0029-5582(66)90310-5
8 https://doi.org/10.1016/0031-9163(66)90702-5
9 https://doi.org/10.1016/0370-2693(67)90361-9
10 https://doi.org/10.1103/physicsphysiquefizika.1.229
11 schema:datePublished 1967-10
12 schema:datePublishedReg 1967-10-01
13 schema:description By making use of a simple method we obtain different families of sum rules from current algebra. The method allows to understand the relation of the reference frame in which equal-time commutators are considered with the form of the sum rules obtained and dispersion relations. The different contributions to the sum rules are then analysed and it is recognized that besides the contributions which are generally considered, there are others which come from disconnected intermediate states, which play an important role. By discussing in detail theP→∞ sum rule we put in evidence the physical content of these extra terms and how they are responsible for the automatic cancellation of the singularities in the variables which, due to the locality of equal-time commutators, do not appear in the right-hand side of the sum rules. The origin and value of these terms is purely dynamical, they have nothing to do with Schwinger terms and their presence is not related to convergence of the sum rule integrals. It is shown that theassumption that they vanish (so to recover the Fubini sum rule for theP→∞ family) implies superconvergence so that it appears clearly that superconvergence is a purely dynamical assumption and is not related to current algebra or locality of equal-time commutators. The structure of other families of sum rules is also discussed and, in particular, that corresponding to the “Δ→∞” family which appears to be of particular interest.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Na7683dd4fb9a4532b123962efaa82c90
18 Nad0cbe08ecc2447d9c506d89d35ea018
19 sg:journal.1328730
20 schema:name Families of sum rules from current algebra
21 schema:pagination 999-1020
22 schema:productId N26fdabf5804b4a1d8145dc6734e6a94b
23 N2feaea507ba94c748bb7d33d7c1ac090
24 N51925649990a47c6b4b6f7c14bc8de8b
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030070872
26 https://doi.org/10.1007/bf02721768
27 schema:sdDatePublished 2019-04-11T13:28
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N38ab1e13f3fa4b8e8b07245a18f3fa3d
30 schema:url http://link.springer.com/10.1007%2FBF02721768
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N1e4b3afa911045ed9d0564d47fb90fd6 rdf:first sg:person.010524743157.80
35 rdf:rest N3b3aafd49598438695aa2f6b12ad0040
36 N26fdabf5804b4a1d8145dc6734e6a94b schema:name doi
37 schema:value 10.1007/bf02721768
38 rdf:type schema:PropertyValue
39 N2feaea507ba94c748bb7d33d7c1ac090 schema:name readcube_id
40 schema:value 8f4169ace2f493818992c74dcf250cf873a18800d0cd26b15bc82106fc3e3bfc
41 rdf:type schema:PropertyValue
42 N38ab1e13f3fa4b8e8b07245a18f3fa3d schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N3b3aafd49598438695aa2f6b12ad0040 rdf:first sg:person.010513643461.57
45 rdf:rest N6dd5f52866824461a741c69e64258897
46 N51925649990a47c6b4b6f7c14bc8de8b schema:name dimensions_id
47 schema:value pub.1030070872
48 rdf:type schema:PropertyValue
49 N6dd5f52866824461a741c69e64258897 rdf:first sg:person.016167622131.11
50 rdf:rest rdf:nil
51 Na7683dd4fb9a4532b123962efaa82c90 schema:volumeNumber 51
52 rdf:type schema:PublicationVolume
53 Nad0cbe08ecc2447d9c506d89d35ea018 schema:issueNumber 4
54 rdf:type schema:PublicationIssue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1328730 schema:issn 0369-3546
62 1826-9869
63 schema:name Il Nuovo Cimento A (1965-1970)
64 rdf:type schema:Periodical
65 sg:person.010513643461.57 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
66 schema:familyName Jengo
67 schema:givenName R.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513643461.57
69 rdf:type schema:Person
70 sg:person.010524743157.80 schema:affiliation https://www.grid.ac/institutes/grid.9132.9
71 schema:familyName Amati
72 schema:givenName D.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524743157.80
74 rdf:type schema:Person
75 sg:person.016167622131.11 schema:affiliation https://www.grid.ac/institutes/grid.9132.9
76 schema:familyName Remiddi
77 schema:givenName E.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167622131.11
79 rdf:type schema:Person
80 sg:pub.10.1007/bf02721129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016573634
81 https://doi.org/10.1007/bf02721129
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02752873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012359320
84 https://doi.org/10.1007/bf02752873
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf03026454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054504917
87 https://doi.org/10.1007/bf03026454
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0029-5582(66)90310-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046223014
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0031-9163(66)90702-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003768428
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0370-2693(67)90361-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045879050
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physicsphysiquefizika.1.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101010396
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
98 schema:name Istituto di Fisica Teorica dell’Università, Trieste
99 rdf:type schema:Organization
100 https://www.grid.ac/institutes/grid.9132.9 schema:alternateName European Organization for Nuclear Research
101 schema:name Cern, Geneva
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...