Stochastic-time description of transitions in unstable and multistable systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-09

AUTHORS

F. T. Arecchi, A. Politi, L. Ulivi

ABSTRACT

The decay of a macroscopic unstable state implies anomalous fluctuations in the amplitudes of the decaying parameters, which are the transient extension of the stationary divergences at the critical point of phase transitions. These decays are best studied, theoretically and experimentally, via the stochastic times of intersection of a given threshold. Besides yielding a closed solvable set of moment equations, the stochastic time approach permits to discriminate the transient fluctuations due to the spread in the initial conditions from those arising from noise along the path. These latter ones limit the validity of the so-called asymptotic approximation. Here we develop a detailed theory including scaling laws and then compare it with experimental measurements in order to show the limit of previous approaches. More... »

PAGES

119-154

References to SciGraph publications

Journal

TITLE

Il Nuovo Cimento B (1971-1996)

ISSUE

1

VOLUME

71

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02721698

DOI

http://dx.doi.org/10.1007/bf02721698

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045836741


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale di Ottica", 
          "id": "https://www.grid.ac/institutes/grid.425378.f", 
          "name": [
            "Istituto di Fisica dell\u2019Universit\u00e0, Firenze", 
            "Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125, Firenze, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arecchi", 
        "givenName": "F. T.", 
        "id": "sg:person.011720550434.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720550434.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale di Ottica", 
          "id": "https://www.grid.ac/institutes/grid.425378.f", 
          "name": [
            "Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125, Firenze, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Politi", 
        "givenName": "A.", 
        "id": "sg:person.013264105675.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale di Ottica", 
          "id": "https://www.grid.ac/institutes/grid.425378.f", 
          "name": [
            "Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125, Firenze, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ulivi", 
        "givenName": "L.", 
        "id": "sg:person.01127407312.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127407312.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01268919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002536064", 
          "https://doi.org/10.1007/bf01268919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01009609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006718986", 
          "https://doi.org/10.1007/bf01009609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-8914(40)90098-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008146861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01292803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014538693", 
          "https://doi.org/10.1007/bf01292803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(82)90838-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038102950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(82)90838-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038102950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01152285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043928327", 
          "https://doi.org/10.1007/bf01152285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01152285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043928327", 
          "https://doi.org/10.1007/bf01152285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(80)90704-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044360569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(80)90704-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044360569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02817308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046388657", 
          "https://doi.org/10.1007/bf02817308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(79)90509-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050924516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(79)90509-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050924516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.438177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058016206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1981v024n01abeh004612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058170907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.149.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.149.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.20.1628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.20.1628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.20.2510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.20.2510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.23.3255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.23.3255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.24.3226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.24.3226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.3.1108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.3.1108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.1168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.1168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.41.1685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.41.1685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.1219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.1219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.37.1199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063100955"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-09", 
    "datePublishedReg": "1982-09-01", 
    "description": "The decay of a macroscopic unstable state implies anomalous fluctuations in the amplitudes of the decaying parameters, which are the transient extension of the stationary divergences at the critical point of phase transitions. These decays are best studied, theoretically and experimentally, via the stochastic times of intersection of a given threshold. Besides yielding a closed solvable set of moment equations, the stochastic time approach permits to discriminate the transient fluctuations due to the spread in the initial conditions from those arising from noise along the path. These latter ones limit the validity of the so-called asymptotic approximation. Here we develop a detailed theory including scaling laws and then compare it with experimental measurements in order to show the limit of previous approaches.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02721698", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336108", 
        "issn": [
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1971-1996)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "Stochastic-time description of transitions in unstable and multistable systems", 
    "pagination": "119-154", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "da56b5a0484ddfd8133a91acaaf1ba2022f26bf5c80033c738096403e043884c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02721698"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045836741"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02721698", 
      "https://app.dimensions.ai/details/publication/pub.1045836741"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000491.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02721698"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02721698'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02721698'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02721698'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02721698'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02721698 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na76fe9813b104ee8af12ee550aa6ee50
4 schema:citation sg:pub.10.1007/bf01009609
5 sg:pub.10.1007/bf01152285
6 sg:pub.10.1007/bf01268919
7 sg:pub.10.1007/bf01292803
8 sg:pub.10.1007/bf02817308
9 https://doi.org/10.1016/0375-9601(79)90509-7
10 https://doi.org/10.1016/0375-9601(80)90704-5
11 https://doi.org/10.1016/0375-9601(82)90838-6
12 https://doi.org/10.1016/s0031-8914(40)90098-2
13 https://doi.org/10.1063/1.438177
14 https://doi.org/10.1070/pu1981v024n01abeh004612
15 https://doi.org/10.1103/physrev.149.301
16 https://doi.org/10.1103/physreva.20.1628
17 https://doi.org/10.1103/physreva.20.2510
18 https://doi.org/10.1103/physreva.23.3255
19 https://doi.org/10.1103/physreva.24.3226
20 https://doi.org/10.1103/physreva.3.1108
21 https://doi.org/10.1103/physrevlett.19.1168
22 https://doi.org/10.1103/physrevlett.41.1685
23 https://doi.org/10.1103/physrevlett.45.1219
24 https://doi.org/10.1103/physrevlett.46.926
25 https://doi.org/10.1143/jpsj.37.1199
26 schema:datePublished 1982-09
27 schema:datePublishedReg 1982-09-01
28 schema:description The decay of a macroscopic unstable state implies anomalous fluctuations in the amplitudes of the decaying parameters, which are the transient extension of the stationary divergences at the critical point of phase transitions. These decays are best studied, theoretically and experimentally, via the stochastic times of intersection of a given threshold. Besides yielding a closed solvable set of moment equations, the stochastic time approach permits to discriminate the transient fluctuations due to the spread in the initial conditions from those arising from noise along the path. These latter ones limit the validity of the so-called asymptotic approximation. Here we develop a detailed theory including scaling laws and then compare it with experimental measurements in order to show the limit of previous approaches.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N44c28f2c9ba6486397613ec1350c3e80
33 Ne214d48d9d264339857ea643763d0635
34 sg:journal.1336108
35 schema:name Stochastic-time description of transitions in unstable and multistable systems
36 schema:pagination 119-154
37 schema:productId N25ef6431ba824fe3b2f29395e02c685a
38 N3aad5059631e473fadd84ff61fef8e87
39 N9356ed0d949446c7b6a64a2923759cc4
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045836741
41 https://doi.org/10.1007/bf02721698
42 schema:sdDatePublished 2019-04-11T00:11
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N87412ae020b046d9b66edc1a8e68dc4c
45 schema:url http://link.springer.com/10.1007/BF02721698
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N229f42d0f7e7457f826c7b0e30e93d74 rdf:first sg:person.01127407312.38
50 rdf:rest rdf:nil
51 N25ef6431ba824fe3b2f29395e02c685a schema:name readcube_id
52 schema:value da56b5a0484ddfd8133a91acaaf1ba2022f26bf5c80033c738096403e043884c
53 rdf:type schema:PropertyValue
54 N3aad5059631e473fadd84ff61fef8e87 schema:name doi
55 schema:value 10.1007/bf02721698
56 rdf:type schema:PropertyValue
57 N44c28f2c9ba6486397613ec1350c3e80 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N87412ae020b046d9b66edc1a8e68dc4c schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N8b5e955ae63844c3a0b6f46dc07e6dc1 rdf:first sg:person.013264105675.78
62 rdf:rest N229f42d0f7e7457f826c7b0e30e93d74
63 N9356ed0d949446c7b6a64a2923759cc4 schema:name dimensions_id
64 schema:value pub.1045836741
65 rdf:type schema:PropertyValue
66 Na76fe9813b104ee8af12ee550aa6ee50 rdf:first sg:person.011720550434.84
67 rdf:rest N8b5e955ae63844c3a0b6f46dc07e6dc1
68 Ne214d48d9d264339857ea643763d0635 schema:volumeNumber 71
69 rdf:type schema:PublicationVolume
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
74 schema:name Statistics
75 rdf:type schema:DefinedTerm
76 sg:journal.1336108 schema:issn 1826-9877
77 schema:name Il Nuovo Cimento B (1971-1996)
78 rdf:type schema:Periodical
79 sg:person.01127407312.38 schema:affiliation https://www.grid.ac/institutes/grid.425378.f
80 schema:familyName Ulivi
81 schema:givenName L.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127407312.38
83 rdf:type schema:Person
84 sg:person.011720550434.84 schema:affiliation https://www.grid.ac/institutes/grid.425378.f
85 schema:familyName Arecchi
86 schema:givenName F. T.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720550434.84
88 rdf:type schema:Person
89 sg:person.013264105675.78 schema:affiliation https://www.grid.ac/institutes/grid.425378.f
90 schema:familyName Politi
91 schema:givenName A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78
93 rdf:type schema:Person
94 sg:pub.10.1007/bf01009609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006718986
95 https://doi.org/10.1007/bf01009609
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01152285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043928327
98 https://doi.org/10.1007/bf01152285
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01268919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002536064
101 https://doi.org/10.1007/bf01268919
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01292803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014538693
104 https://doi.org/10.1007/bf01292803
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02817308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046388657
107 https://doi.org/10.1007/bf02817308
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0375-9601(79)90509-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050924516
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0375-9601(80)90704-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044360569
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0375-9601(82)90838-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038102950
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0031-8914(40)90098-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008146861
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.438177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058016206
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1070/pu1981v024n01abeh004612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058170907
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrev.149.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433546
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physreva.20.1628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060468170
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreva.20.2510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060468281
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreva.23.3255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060469333
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreva.24.3226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060469760
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreva.3.1108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060472230
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.19.1168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060770087
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.41.1685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783121
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.45.1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785278
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.46.926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786337
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1143/jpsj.37.1199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063100955
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.425378.f schema:alternateName Istituto Nazionale di Ottica
144 schema:name Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125, Firenze, Italia
145 Istituto di Fisica dell’Università, Firenze
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...