Theory of corrections to unitary symmetry formulae View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1965-11

AUTHORS

G. Furlan, F. Lannoy, C. Rossetti, G. Segrè

ABSTRACT

A systematic analysis of the equal-time commutation relations of the generators of an algebra with certain physical operators is made. A method is then introduced whereby considering matrix elements of such commutators between physical one-particle states and using completeness and invariance under space-time translations, corrections to broken-symmetry group-theoretical formulae are obtained. Several applications to weak, electromagnetic and strong interactions are then made. More... »

PAGES

597-629

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02721047

DOI

http://dx.doi.org/10.1007/bf02721047

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029441736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Fisica dell'Universit\u00e0, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Istituto di Fisica dell'Universit\u00e0, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furlan", 
        "givenName": "G.", 
        "id": "sg:person.014625714377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CERN, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.9132.9", 
          "name": [
            "CERN, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lannoy", 
        "givenName": "F.", 
        "id": "sg:person.014455070655.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014455070655.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CERN, Geneva, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.9132.9", 
          "name": [
            "CERN, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rossetti", 
        "givenName": "C.", 
        "id": "sg:person.010450514453.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010450514453.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Fisica dell'Universit\u00e0, Torino, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Istituto di Fisica dell'Universit\u00e0, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Segr\u00e8", 
        "givenName": "G.", 
        "id": "sg:person.011642327057.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011642327057.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1965-11", 
    "datePublishedReg": "1965-11-01", 
    "description": "A systematic analysis of the equal-time commutation relations of the generators of an algebra with certain physical operators is made. A method is then introduced whereby considering matrix elements of such commutators between physical one-particle states and using completeness and invariance under space-time translations, corrections to broken-symmetry group-theoretical formulae are obtained. Several applications to weak, electromagnetic and strong interactions are then made.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02721047", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1328730", 
        "issn": [
          "0369-3546", 
          "1826-9869"
        ], 
        "name": "Il Nuovo Cimento A (1965-1970)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "space-time translations", 
      "equal-time commutation relations", 
      "commutation relations", 
      "physical operators", 
      "theories of corrections", 
      "one-particle states", 
      "symmetry formula", 
      "such commutators", 
      "algebra", 
      "matrix elements", 
      "formula", 
      "commutators", 
      "operators", 
      "invariance", 
      "theory", 
      "generator", 
      "systematic analysis", 
      "applications", 
      "completeness", 
      "correction", 
      "elements", 
      "analysis", 
      "state", 
      "relation", 
      "strong interaction", 
      "translation", 
      "interaction", 
      "method", 
      "certain physical operators", 
      "broken-symmetry group-theoretical formulae", 
      "group-theoretical formulae", 
      "unitary symmetry formulae"
    ], 
    "name": "Theory of corrections to unitary symmetry formulae", 
    "pagination": "597-629", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029441736"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02721047"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02721047", 
      "https://app.dimensions.ai/details/publication/pub.1029441736"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_93.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02721047"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02721047'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02721047'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02721047'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02721047'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      58 URIs      50 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02721047 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3000de872cd94c08b6465ed59f5ca4a2
4 schema:datePublished 1965-11
5 schema:datePublishedReg 1965-11-01
6 schema:description A systematic analysis of the equal-time commutation relations of the generators of an algebra with certain physical operators is made. A method is then introduced whereby considering matrix elements of such commutators between physical one-particle states and using completeness and invariance under space-time translations, corrections to broken-symmetry group-theoretical formulae are obtained. Several applications to weak, electromagnetic and strong interactions are then made.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N5e59acefecf04819876b3cc2b1664169
11 N6a79f20e6d7d44a6b72847326692baea
12 sg:journal.1328730
13 schema:keywords algebra
14 analysis
15 applications
16 broken-symmetry group-theoretical formulae
17 certain physical operators
18 commutation relations
19 commutators
20 completeness
21 correction
22 elements
23 equal-time commutation relations
24 formula
25 generator
26 group-theoretical formulae
27 interaction
28 invariance
29 matrix elements
30 method
31 one-particle states
32 operators
33 physical operators
34 relation
35 space-time translations
36 state
37 strong interaction
38 such commutators
39 symmetry formula
40 systematic analysis
41 theories of corrections
42 theory
43 translation
44 unitary symmetry formulae
45 schema:name Theory of corrections to unitary symmetry formulae
46 schema:pagination 597-629
47 schema:productId N07ccd2a5ecf24c1cbfee360ff21a1d5b
48 N9342f55702894348b4fcf56ecdba9fdf
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029441736
50 https://doi.org/10.1007/bf02721047
51 schema:sdDatePublished 2021-11-01T18:42
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N5d43e482e80d43598acef0acde901f48
54 schema:url https://doi.org/10.1007/bf02721047
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N07ccd2a5ecf24c1cbfee360ff21a1d5b schema:name doi
59 schema:value 10.1007/bf02721047
60 rdf:type schema:PropertyValue
61 N3000de872cd94c08b6465ed59f5ca4a2 rdf:first sg:person.014625714377.67
62 rdf:rest N4f4548ab739844ae83a9de7795d8343e
63 N4f4548ab739844ae83a9de7795d8343e rdf:first sg:person.014455070655.27
64 rdf:rest N7ce06636fb5f45c39010729a9378aa3b
65 N5d43e482e80d43598acef0acde901f48 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N5e59acefecf04819876b3cc2b1664169 schema:issueNumber 2
68 rdf:type schema:PublicationIssue
69 N6a79f20e6d7d44a6b72847326692baea schema:volumeNumber 40
70 rdf:type schema:PublicationVolume
71 N7ce06636fb5f45c39010729a9378aa3b rdf:first sg:person.010450514453.73
72 rdf:rest Na6c76e67e94d46619f071077a3c9b24e
73 N9342f55702894348b4fcf56ecdba9fdf schema:name dimensions_id
74 schema:value pub.1029441736
75 rdf:type schema:PropertyValue
76 Na6c76e67e94d46619f071077a3c9b24e rdf:first sg:person.011642327057.42
77 rdf:rest rdf:nil
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
82 schema:name Pure Mathematics
83 rdf:type schema:DefinedTerm
84 sg:journal.1328730 schema:issn 0369-3546
85 1826-9869
86 schema:name Il Nuovo Cimento A (1965-1970)
87 schema:publisher Springer Nature
88 rdf:type schema:Periodical
89 sg:person.010450514453.73 schema:affiliation grid-institutes:grid.9132.9
90 schema:familyName Rossetti
91 schema:givenName C.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010450514453.73
93 rdf:type schema:Person
94 sg:person.011642327057.42 schema:affiliation grid-institutes:grid.7605.4
95 schema:familyName Segrè
96 schema:givenName G.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011642327057.42
98 rdf:type schema:Person
99 sg:person.014455070655.27 schema:affiliation grid-institutes:grid.9132.9
100 schema:familyName Lannoy
101 schema:givenName F.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014455070655.27
103 rdf:type schema:Person
104 sg:person.014625714377.67 schema:affiliation grid-institutes:None
105 schema:familyName Furlan
106 schema:givenName G.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014625714377.67
108 rdf:type schema:Person
109 grid-institutes:None schema:alternateName Istituto di Fisica dell'Università, Trieste, Italy
110 schema:name Istituto di Fisica dell'Università, Trieste, Italy
111 rdf:type schema:Organization
112 grid-institutes:grid.7605.4 schema:alternateName Istituto di Fisica dell'Università, Torino, Italy
113 schema:name Istituto di Fisica dell'Università, Torino, Italy
114 rdf:type schema:Organization
115 grid-institutes:grid.9132.9 schema:alternateName CERN, Geneva, Switzerland
116 schema:name CERN, Geneva, Switzerland
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...