Two-photon interband transitions at critical points in semiconductors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1970-11

AUTHORS

A. R. Hassan

ABSTRACT

The two-photon transition probability between electronic energy bands in crystals is obtained in correspondence to all types of critical points. Expressions are given for the discontinuities in the absorption rate of one of the two photons as a function of its frequency when the sum of the energies of the two photons is equal to the energy difference of the conduction and of the valence band at that particular critical point. The results indicate sharp peaks in correspondence to saddle pointsM1, besides the sharp edge atM0 already found by Braunstein. For noncubic materials the anisotropy is shown to influence the shape of the edgeM0 and of the peakM1. In the limiting case of a two-dimensional crystal the two-photon transition probability gives a sharp logarithmic singularity atM1. The results are analogous to those for one-photon processes, but all the singularities and the peaks are sharper in this case and their intensities depend on the position of the virtual states. The possibility of studying other critical points besides the edge by two-photon spectroscopy is discussed and substances such as hexagonal BN, cubic ZnS, and AlSb and GaAs seem to be good candidates for detecting two-photon transition to higher-lying critical points of the conduction band. More... »

PAGES

21-38

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02712491

DOI

http://dx.doi.org/10.1007/bf02712491

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006870148


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, Pisa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassan", 
        "givenName": "A. R.", 
        "id": "sg:person.015142217701.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142217701.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-3697(62)90195-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016736040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(62)90195-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016736040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02710699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030844334", 
          "https://doi.org/10.1007/bf02710699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02710699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030844334", 
          "https://doi.org/10.1007/bf02710699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19314010303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036673824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(70)90072-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041753463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(70)90072-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041753463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02710685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048945881", 
          "https://doi.org/10.1007/bf02710685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02710685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048945881", 
          "https://doi.org/10.1007/bf02710685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1754803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057815248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1777035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057820589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.125.475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060425106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.125.475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060425106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.134.a499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.134.a499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.137.a1455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.137.a1455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.153.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.153.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.11.414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.11.414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.13.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060767532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.13.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060767532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.16.971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.16.971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.18.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.18.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769608"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1970-11", 
    "datePublishedReg": "1970-11-01", 
    "description": "The two-photon transition probability between electronic energy bands in crystals is obtained in correspondence to all types of critical points. Expressions are given for the discontinuities in the absorption rate of one of the two photons as a function of its frequency when the sum of the energies of the two photons is equal to the energy difference of the conduction and of the valence band at that particular critical point. The results indicate sharp peaks in correspondence to saddle pointsM1, besides the sharp edge atM0 already found by Braunstein. For noncubic materials the anisotropy is shown to influence the shape of the edgeM0 and of the peakM1. In the limiting case of a two-dimensional crystal the two-photon transition probability gives a sharp logarithmic singularity atM1. The results are analogous to those for one-photon processes, but all the singularities and the peaks are sharper in this case and their intensities depend on the position of the virtual states. The possibility of studying other critical points besides the edge by two-photon spectroscopy is discussed and substances such as hexagonal BN, cubic ZnS, and AlSb and GaAs seem to be good candidates for detecting two-photon transition to higher-lying critical points of the conduction band.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02712491", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1328731", 
        "issn": [
          "0369-3554", 
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1965-1970)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "Two-photon interband transitions at critical points in semiconductors", 
    "pagination": "21-38", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "20b9a085e58148662f4de41c7bbba1ea88af33ed76a08d6dc882d1fb375ae603"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02712491"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006870148"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02712491", 
      "https://app.dimensions.ai/details/publication/pub.1006870148"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF02712491"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02712491'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02712491'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02712491'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02712491'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02712491 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nec41766ca58a4dc9ae4d2ee0ee46155e
4 schema:citation sg:pub.10.1007/bf02710685
5 sg:pub.10.1007/bf02710699
6 https://doi.org/10.1002/andp.19314010303
7 https://doi.org/10.1016/0022-3697(62)90195-6
8 https://doi.org/10.1016/0030-4018(70)90072-6
9 https://doi.org/10.1063/1.1754803
10 https://doi.org/10.1063/1.1777035
11 https://doi.org/10.1103/physrev.125.475
12 https://doi.org/10.1103/physrev.134.a499
13 https://doi.org/10.1103/physrev.137.a1455
14 https://doi.org/10.1103/physrev.153.913
15 https://doi.org/10.1103/physrevlett.11.414
16 https://doi.org/10.1103/physrevlett.13.371
17 https://doi.org/10.1103/physrevlett.16.971
18 https://doi.org/10.1103/physrevlett.18.113
19 schema:datePublished 1970-11
20 schema:datePublishedReg 1970-11-01
21 schema:description The two-photon transition probability between electronic energy bands in crystals is obtained in correspondence to all types of critical points. Expressions are given for the discontinuities in the absorption rate of one of the two photons as a function of its frequency when the sum of the energies of the two photons is equal to the energy difference of the conduction and of the valence band at that particular critical point. The results indicate sharp peaks in correspondence to saddle pointsM1, besides the sharp edge atM0 already found by Braunstein. For noncubic materials the anisotropy is shown to influence the shape of the edgeM0 and of the peakM1. In the limiting case of a two-dimensional crystal the two-photon transition probability gives a sharp logarithmic singularity atM1. The results are analogous to those for one-photon processes, but all the singularities and the peaks are sharper in this case and their intensities depend on the position of the virtual states. The possibility of studying other critical points besides the edge by two-photon spectroscopy is discussed and substances such as hexagonal BN, cubic ZnS, and AlSb and GaAs seem to be good candidates for detecting two-photon transition to higher-lying critical points of the conduction band.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N66015bb52dc4460bb953698a7ce04959
26 Nb55e2c667d3e4b62a4b6e6426495ce28
27 sg:journal.1328731
28 schema:name Two-photon interband transitions at critical points in semiconductors
29 schema:pagination 21-38
30 schema:productId N497fe2d3fb8f4927886d7cf3336c392b
31 N524a15f361fa42ccb948b2da0858bdd6
32 N5c11ee0548d145408b77f9ebb1665a33
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006870148
34 https://doi.org/10.1007/bf02712491
35 schema:sdDatePublished 2019-04-11T13:28
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N720660cf66404c0ab61c83a455ba9725
38 schema:url http://link.springer.com/10.1007/BF02712491
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N497fe2d3fb8f4927886d7cf3336c392b schema:name readcube_id
43 schema:value 20b9a085e58148662f4de41c7bbba1ea88af33ed76a08d6dc882d1fb375ae603
44 rdf:type schema:PropertyValue
45 N524a15f361fa42ccb948b2da0858bdd6 schema:name doi
46 schema:value 10.1007/bf02712491
47 rdf:type schema:PropertyValue
48 N5c11ee0548d145408b77f9ebb1665a33 schema:name dimensions_id
49 schema:value pub.1006870148
50 rdf:type schema:PropertyValue
51 N66015bb52dc4460bb953698a7ce04959 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N720660cf66404c0ab61c83a455ba9725 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nb55e2c667d3e4b62a4b6e6426495ce28 schema:volumeNumber 70
56 rdf:type schema:PublicationVolume
57 Nec41766ca58a4dc9ae4d2ee0ee46155e rdf:first sg:person.015142217701.66
58 rdf:rest rdf:nil
59 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
60 schema:name Chemical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
63 schema:name Physical Chemistry (incl. Structural)
64 rdf:type schema:DefinedTerm
65 sg:journal.1328731 schema:issn 0369-3554
66 1826-9877
67 schema:name Il Nuovo Cimento B (1965-1970)
68 rdf:type schema:Periodical
69 sg:person.015142217701.66 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
70 schema:familyName Hassan
71 schema:givenName A. R.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142217701.66
73 rdf:type schema:Person
74 sg:pub.10.1007/bf02710685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048945881
75 https://doi.org/10.1007/bf02710685
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02710699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030844334
78 https://doi.org/10.1007/bf02710699
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/andp.19314010303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036673824
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0022-3697(62)90195-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016736040
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0030-4018(70)90072-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041753463
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1063/1.1754803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057815248
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1063/1.1777035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057820589
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrev.125.475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060425106
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrev.134.a499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428560
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrev.137.a1455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429904
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrev.153.913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060434540
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.11.414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760921
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.13.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060767532
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.16.971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769046
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.18.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769608
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
107 schema:name Scuola Normale Superiore, Pisa
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...