Relativistic motion in a constant field and the schott energy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1970-11

AUTHORS

J. C. Herrera

ABSTRACT

The Lorentz-Dirac equation of motion for a particle moving in a uniform magnetic field is solved in a form consistent with the idea of Bhabha that the physical solutions be continuous functions of the interaction constant when the value of the constant approaches zero. Using this solution, we show explicitly how the Schott energy plays an essential role in the energy balance characterizing the motion. Similar considerations for the Schott energy are shown to apply in the case of motion in a uniform electric field. An approximate expression for the Schott energy associated with a particle moving in an arbitrary constant field is derived. More... »

PAGES

12-20

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02712490

DOI

http://dx.doi.org/10.1007/bf02712490

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036054519


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Brookhaven National Laboratory, Upton, N. Y."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrera", 
        "givenName": "J. C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02731806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023092814", 
          "https://doi.org/10.1007/bf02731806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(60)90105-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044588286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1938.0124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045569504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100022714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053773239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.70.759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.70.759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.17.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.17.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.33.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.33.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838027"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1970-11", 
    "datePublishedReg": "1970-11-01", 
    "description": "The Lorentz-Dirac equation of motion for a particle moving in a uniform magnetic field is solved in a form consistent with the idea of Bhabha that the physical solutions be continuous functions of the interaction constant when the value of the constant approaches zero. Using this solution, we show explicitly how the Schott energy plays an essential role in the energy balance characterizing the motion. Similar considerations for the Schott energy are shown to apply in the case of motion in a uniform electric field. An approximate expression for the Schott energy associated with a particle moving in an arbitrary constant field is derived.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf02712490", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1328731", 
        "issn": [
          "0369-3554", 
          "1826-9877"
        ], 
        "name": "Il Nuovo Cimento B (1965-1970)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "Relativistic motion in a constant field and the schott energy", 
    "pagination": "12-20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "abc000dae6235fb1bb1753748e59990aae8b45b17f7862bfd5b0ce18899d20cc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02712490"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036054519"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02712490", 
      "https://app.dimensions.ai/details/publication/pub.1036054519"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF02712490"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02712490'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02712490'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02712490'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02712490'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02712490 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N2c451158d1b74cfcbf6f4b69f4633f83
4 schema:citation sg:pub.10.1007/bf02731806
5 https://doi.org/10.1016/0003-4916(60)90105-6
6 https://doi.org/10.1017/s0305004100022714
7 https://doi.org/10.1098/rspa.1938.0124
8 https://doi.org/10.1103/physrev.70.759
9 https://doi.org/10.1103/revmodphys.17.157
10 https://doi.org/10.1103/revmodphys.33.37
11 schema:datePublished 1970-11
12 schema:datePublishedReg 1970-11-01
13 schema:description The Lorentz-Dirac equation of motion for a particle moving in a uniform magnetic field is solved in a form consistent with the idea of Bhabha that the physical solutions be continuous functions of the interaction constant when the value of the constant approaches zero. Using this solution, we show explicitly how the Schott energy plays an essential role in the energy balance characterizing the motion. Similar considerations for the Schott energy are shown to apply in the case of motion in a uniform electric field. An approximate expression for the Schott energy associated with a particle moving in an arbitrary constant field is derived.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N131096661bde423ab256e77d77277490
18 N136426189cb24ab4816a297d657af6cf
19 sg:journal.1328731
20 schema:name Relativistic motion in a constant field and the schott energy
21 schema:pagination 12-20
22 schema:productId N305f5d19ebc34f3fb70a40b728a8d541
23 N442607f2ccee4cd29adffb2ec6f67f82
24 N485c1da52cfc48729f752f146a8befbb
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036054519
26 https://doi.org/10.1007/bf02712490
27 schema:sdDatePublished 2019-04-11T13:30
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N19b191b8837e447f81758be661580468
30 schema:url http://link.springer.com/10.1007%2FBF02712490
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N131096661bde423ab256e77d77277490 schema:issueNumber 1
35 rdf:type schema:PublicationIssue
36 N136426189cb24ab4816a297d657af6cf schema:volumeNumber 70
37 rdf:type schema:PublicationVolume
38 N19b191b8837e447f81758be661580468 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N2c451158d1b74cfcbf6f4b69f4633f83 rdf:first N874f68263a6642d8bf730dbf3c3909c3
41 rdf:rest rdf:nil
42 N305f5d19ebc34f3fb70a40b728a8d541 schema:name readcube_id
43 schema:value abc000dae6235fb1bb1753748e59990aae8b45b17f7862bfd5b0ce18899d20cc
44 rdf:type schema:PropertyValue
45 N442607f2ccee4cd29adffb2ec6f67f82 schema:name doi
46 schema:value 10.1007/bf02712490
47 rdf:type schema:PropertyValue
48 N485c1da52cfc48729f752f146a8befbb schema:name dimensions_id
49 schema:value pub.1036054519
50 rdf:type schema:PropertyValue
51 N874f68263a6642d8bf730dbf3c3909c3 schema:affiliation https://www.grid.ac/institutes/grid.202665.5
52 schema:familyName Herrera
53 schema:givenName J. C.
54 rdf:type schema:Person
55 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
56 schema:name Physical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
59 schema:name Other Physical Sciences
60 rdf:type schema:DefinedTerm
61 sg:journal.1328731 schema:issn 0369-3554
62 1826-9877
63 schema:name Il Nuovo Cimento B (1965-1970)
64 rdf:type schema:Periodical
65 sg:pub.10.1007/bf02731806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023092814
66 https://doi.org/10.1007/bf02731806
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1016/0003-4916(60)90105-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044588286
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1017/s0305004100022714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053773239
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1098/rspa.1938.0124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045569504
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1103/physrev.70.759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060452984
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/revmodphys.17.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837214
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/revmodphys.33.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838027
79 rdf:type schema:CreativeWork
80 https://www.grid.ac/institutes/grid.202665.5 schema:alternateName Brookhaven National Laboratory
81 schema:name Brookhaven National Laboratory, Upton, N. Y.
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...