On generalized phase operators for the quantum harmonic oscillator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1970-11

AUTHORS

K. Eswaran

ABSTRACT

Following the demonstration by Lerner that the phase (cosine and sine) operators for a harmonic oscillator can be much more general than the specific set considered earlier in the literature, we make a systematic study of the properties of such generalized phase operators. We determine their eigenstates and show that the coefficients of transformation from the number eigenstates to these are, quite generally, orthogonal polynomials in the eigenvalue parameter. Using these generalizedC andS operators the number-phase minimum uncertainty state is given. Finally we point out that though the commutator [C, S] cannot be made to vanish, nevertheless one can constructC andS in such a way that their commutator has a vanishing expectation value with respect to all coherent states having a given mean occupation number exceeding unity. More... »

PAGES

1-11

References to SciGraph publications

  • 1968-07. Harmonic-oscillator phase operators in IL NUOVO CIMENTO B (1965-1970)
  • 1968-10. On the unity operator for coherent states in IL NUOVO CIMENTO A (1965-1970)
  • Journal

    TITLE

    Il Nuovo Cimento B (1965-1970)

    ISSUE

    1

    VOLUME

    70

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02712489

    DOI

    http://dx.doi.org/10.1007/bf02712489

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037793366


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Madras", 
              "id": "https://www.grid.ac/institutes/grid.413015.2", 
              "name": [
                "Division of Theoretical Physics, University of Madras, Madras"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eswaran", 
            "givenName": "K.", 
            "id": "sg:person.015013212723.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015013212723.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02759339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005724056", 
              "https://doi.org/10.1007/bf02759339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1927.0039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019932507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(63)90442-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040132456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(63)90442-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040132456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02711966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052055132", 
              "https://doi.org/10.1007/bf02711966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02711966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052055132", 
              "https://doi.org/10.1007/bf02711966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1664585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057742618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.131.2766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060427420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.131.2766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060427420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.10.277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.10.277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.14.387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060767894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.14.387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060767894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.40.411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.40.411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1971895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062243661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physicsphysiquefizika.1.49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101010409"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1970-11", 
        "datePublishedReg": "1970-11-01", 
        "description": "Following the demonstration by Lerner that the phase (cosine and sine) operators for a harmonic oscillator can be much more general than the specific set considered earlier in the literature, we make a systematic study of the properties of such generalized phase operators. We determine their eigenstates and show that the coefficients of transformation from the number eigenstates to these are, quite generally, orthogonal polynomials in the eigenvalue parameter. Using these generalizedC andS operators the number-phase minimum uncertainty state is given. Finally we point out that though the commutator [C, S] cannot be made to vanish, nevertheless one can constructC andS in such a way that their commutator has a vanishing expectation value with respect to all coherent states having a given mean occupation number exceeding unity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02712489", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1328731", 
            "issn": [
              "0369-3554", 
              "1826-9877"
            ], 
            "name": "Il Nuovo Cimento B (1965-1970)", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "70"
          }
        ], 
        "name": "On generalized phase operators for the quantum harmonic oscillator", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b4095eb31480daf92bdc0c8b28d579d7185c4c90430af1b7ac4b5eba8e01b334"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02712489"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037793366"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02712489", 
          "https://app.dimensions.ai/details/publication/pub.1037793366"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF02712489"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02712489'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02712489'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02712489'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02712489'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02712489 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1dc4fcdb8177486d9a373d6c98526f3f
    4 schema:citation sg:pub.10.1007/bf02711966
    5 sg:pub.10.1007/bf02759339
    6 https://doi.org/10.1016/0031-9163(63)90442-6
    7 https://doi.org/10.1063/1.1664585
    8 https://doi.org/10.1098/rspa.1927.0039
    9 https://doi.org/10.1103/physicsphysiquefizika.1.49
    10 https://doi.org/10.1103/physrev.131.2766
    11 https://doi.org/10.1103/physrevlett.10.277
    12 https://doi.org/10.1103/physrevlett.14.387
    13 https://doi.org/10.1103/revmodphys.40.411
    14 https://doi.org/10.1119/1.1971895
    15 schema:datePublished 1970-11
    16 schema:datePublishedReg 1970-11-01
    17 schema:description Following the demonstration by Lerner that the phase (cosine and sine) operators for a harmonic oscillator can be much more general than the specific set considered earlier in the literature, we make a systematic study of the properties of such generalized phase operators. We determine their eigenstates and show that the coefficients of transformation from the number eigenstates to these are, quite generally, orthogonal polynomials in the eigenvalue parameter. Using these generalizedC andS operators the number-phase minimum uncertainty state is given. Finally we point out that though the commutator [C, S] cannot be made to vanish, nevertheless one can constructC andS in such a way that their commutator has a vanishing expectation value with respect to all coherent states having a given mean occupation number exceeding unity.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N3ac07c1b4ff540be88d86bd476eb3bff
    22 Nb30446c1650648afb7494f67d8e32420
    23 sg:journal.1328731
    24 schema:name On generalized phase operators for the quantum harmonic oscillator
    25 schema:pagination 1-11
    26 schema:productId N32ab2dd10ecc46eb88ef627e3a1bfa70
    27 N638097b939e444438f7cb179efa58ed8
    28 Nfb9c868624aa434d8846291ec5cd5015
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037793366
    30 https://doi.org/10.1007/bf02712489
    31 schema:sdDatePublished 2019-04-11T13:36
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N83bbc9346a56409190ecedbbb6a7aa05
    34 schema:url http://link.springer.com/10.1007%2FBF02712489
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N1dc4fcdb8177486d9a373d6c98526f3f rdf:first sg:person.015013212723.55
    39 rdf:rest rdf:nil
    40 N32ab2dd10ecc46eb88ef627e3a1bfa70 schema:name dimensions_id
    41 schema:value pub.1037793366
    42 rdf:type schema:PropertyValue
    43 N3ac07c1b4ff540be88d86bd476eb3bff schema:issueNumber 1
    44 rdf:type schema:PublicationIssue
    45 N638097b939e444438f7cb179efa58ed8 schema:name readcube_id
    46 schema:value b4095eb31480daf92bdc0c8b28d579d7185c4c90430af1b7ac4b5eba8e01b334
    47 rdf:type schema:PropertyValue
    48 N83bbc9346a56409190ecedbbb6a7aa05 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nb30446c1650648afb7494f67d8e32420 schema:volumeNumber 70
    51 rdf:type schema:PublicationVolume
    52 Nfb9c868624aa434d8846291ec5cd5015 schema:name doi
    53 schema:value 10.1007/bf02712489
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1328731 schema:issn 0369-3554
    62 1826-9877
    63 schema:name Il Nuovo Cimento B (1965-1970)
    64 rdf:type schema:Periodical
    65 sg:person.015013212723.55 schema:affiliation https://www.grid.ac/institutes/grid.413015.2
    66 schema:familyName Eswaran
    67 schema:givenName K.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015013212723.55
    69 rdf:type schema:Person
    70 sg:pub.10.1007/bf02711966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052055132
    71 https://doi.org/10.1007/bf02711966
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf02759339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005724056
    74 https://doi.org/10.1007/bf02759339
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1016/0031-9163(63)90442-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040132456
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1063/1.1664585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742618
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1098/rspa.1927.0039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019932507
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1103/physicsphysiquefizika.1.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101010409
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1103/physrev.131.2766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060427420
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1103/physrevlett.10.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752464
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1103/physrevlett.14.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060767894
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1103/revmodphys.40.411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838605
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1119/1.1971895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062243661
    93 rdf:type schema:CreativeWork
    94 https://www.grid.ac/institutes/grid.413015.2 schema:alternateName University of Madras
    95 schema:name Division of Theoretical Physics, University of Madras, Madras
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...