Entanglement production in quantized chaotic systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-04

AUTHORS

Jayendra N. Bandyopadhyay, Arul Lakshminarayan

ABSTRACT

Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, chaos in the system produces more entanglement. However, coupling strength between two subsystems is also a very important parameter for entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed-state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed-state entanglement production in chaotic systems. More... »

PAGES

577-592

References to SciGraph publications

  • 1987-09. Classical and quantum chaos for a kicked top in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf02706205

    DOI

    http://dx.doi.org/10.1007/bf02706205

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013615663


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Physical Research Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.465082.d", 
              "name": [
                "Physical Research Laboratory, Navrangpura, 380 009, Ahmedabad, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bandyopadhyay", 
            "givenName": "Jayendra N.", 
            "id": "sg:person.01117703753.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117703753.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Technology Madras", 
              "id": "https://www.grid.ac/institutes/grid.417969.4", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 600 036, Chennai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lakshminarayan", 
            "givenName": "Arul", 
            "id": "sg:person.010231207056.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010231207056.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physreva.69.042304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001570458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.69.042304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001570458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002540107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002540107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.67.052304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008284360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.67.052304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008284360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.65.032314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013583663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.65.032314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013583663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013951720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013951720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.060402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026225683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.060402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026225683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2003.09.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029375426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2003.09.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029375426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01303727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042734315", 
              "https://doi.org/10.1007/bf01303727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01303727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042734315", 
              "https://doi.org/10.1007/bf01303727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100013554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053995998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.30.1610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060472631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.30.1610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060472631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.52.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.52.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.53.1515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.53.1515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.2881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.2881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.5524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.5524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1994.365700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095740049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511524622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098667582"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-04", 
        "datePublishedReg": "2005-04-01", 
        "description": "Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, chaos in the system produces more entanglement. However, coupling strength between two subsystems is also a very important parameter for entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed-state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed-state entanglement production in chaotic systems.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf02706205", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1036186", 
            "issn": [
              "0304-4289", 
              "0973-7111"
            ], 
            "name": "Pramana", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "64"
          }
        ], 
        "name": "Entanglement production in quantized chaotic systems", 
        "pagination": "577-592", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "40dca26e026ca274abeccc5ccaa6b8b249f38ac1f0ed9866e6ac3620638f3ec2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf02706205"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013615663"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf02706205", 
          "https://app.dimensions.ai/details/publication/pub.1013615663"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF02706205"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02706205'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02706205'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02706205'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02706205'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf02706205 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N4105b155c71a4d278b263b6eabbef2ad
    4 schema:citation sg:pub.10.1007/bf01303727
    5 https://doi.org/10.1016/j.physleta.2003.09.009
    6 https://doi.org/10.1017/cbo9780511524622
    7 https://doi.org/10.1017/s0305004100013554
    8 https://doi.org/10.1103/physreva.30.1610
    9 https://doi.org/10.1103/physreva.65.032314
    10 https://doi.org/10.1103/physreva.67.052304
    11 https://doi.org/10.1103/physreva.69.042304
    12 https://doi.org/10.1103/physrevlett.52.1
    13 https://doi.org/10.1103/physrevlett.53.1515
    14 https://doi.org/10.1103/physrevlett.67.661
    15 https://doi.org/10.1103/physrevlett.69.2881
    16 https://doi.org/10.1103/physrevlett.70.1895
    17 https://doi.org/10.1103/physrevlett.79.325
    18 https://doi.org/10.1103/physrevlett.80.5524
    19 https://doi.org/10.1103/physrevlett.89.060402
    20 https://doi.org/10.1109/sfcs.1994.365700
    21 schema:datePublished 2005-04
    22 schema:datePublishedReg 2005-04-01
    23 schema:description Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, chaos in the system produces more entanglement. However, coupling strength between two subsystems is also a very important parameter for entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed-state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed-state entanglement production in chaotic systems.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N27393b3633e3495a81cb23db38376eb2
    28 Naacbafc68f644097a9ea0064784ca4b6
    29 sg:journal.1036186
    30 schema:name Entanglement production in quantized chaotic systems
    31 schema:pagination 577-592
    32 schema:productId N88ef1e91f7b24df188bde945644cb484
    33 Nb71c7cfa4cd74105b0dafba1f3cd752c
    34 Nf3d67bfe8f0547ed936599f45399649f
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013615663
    36 https://doi.org/10.1007/bf02706205
    37 schema:sdDatePublished 2019-04-11T13:34
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Nd326e37f173a4d7b80b30d0c7b273c74
    40 schema:url http://link.springer.com/10.1007/BF02706205
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N27393b3633e3495a81cb23db38376eb2 schema:volumeNumber 64
    45 rdf:type schema:PublicationVolume
    46 N4105b155c71a4d278b263b6eabbef2ad rdf:first sg:person.01117703753.51
    47 rdf:rest Na203ff965d3e4d768a55ace3638eb9b0
    48 N88ef1e91f7b24df188bde945644cb484 schema:name doi
    49 schema:value 10.1007/bf02706205
    50 rdf:type schema:PropertyValue
    51 Na203ff965d3e4d768a55ace3638eb9b0 rdf:first sg:person.010231207056.62
    52 rdf:rest rdf:nil
    53 Naacbafc68f644097a9ea0064784ca4b6 schema:issueNumber 4
    54 rdf:type schema:PublicationIssue
    55 Nb71c7cfa4cd74105b0dafba1f3cd752c schema:name readcube_id
    56 schema:value 40dca26e026ca274abeccc5ccaa6b8b249f38ac1f0ed9866e6ac3620638f3ec2
    57 rdf:type schema:PropertyValue
    58 Nd326e37f173a4d7b80b30d0c7b273c74 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 Nf3d67bfe8f0547ed936599f45399649f schema:name dimensions_id
    61 schema:value pub.1013615663
    62 rdf:type schema:PropertyValue
    63 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Physical Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Quantum Physics
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1036186 schema:issn 0304-4289
    70 0973-7111
    71 schema:name Pramana
    72 rdf:type schema:Periodical
    73 sg:person.010231207056.62 schema:affiliation https://www.grid.ac/institutes/grid.417969.4
    74 schema:familyName Lakshminarayan
    75 schema:givenName Arul
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010231207056.62
    77 rdf:type schema:Person
    78 sg:person.01117703753.51 schema:affiliation https://www.grid.ac/institutes/grid.465082.d
    79 schema:familyName Bandyopadhyay
    80 schema:givenName Jayendra N.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117703753.51
    82 rdf:type schema:Person
    83 sg:pub.10.1007/bf01303727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042734315
    84 https://doi.org/10.1007/bf01303727
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/j.physleta.2003.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029375426
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1017/cbo9780511524622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667582
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1017/s0305004100013554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053995998
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1103/physreva.30.1610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060472631
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1103/physreva.65.032314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013583663
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1103/physreva.67.052304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008284360
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1103/physreva.69.042304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001570458
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physrevlett.52.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789643
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrevlett.53.1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790516
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1103/physrevlett.67.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803926
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1103/physrevlett.69.2881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805641
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1103/physrevlett.70.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013951720
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1103/physrevlett.79.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002540107
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1103/physrevlett.80.5524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817691
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrevlett.89.060402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026225683
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/sfcs.1994.365700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095740049
    117 rdf:type schema:CreativeWork
    118 https://www.grid.ac/institutes/grid.417969.4 schema:alternateName Indian Institute of Technology Madras
    119 schema:name Department of Physics, Indian Institute of Technology, 600 036, Chennai, India
    120 rdf:type schema:Organization
    121 https://www.grid.ac/institutes/grid.465082.d schema:alternateName Physical Research Laboratory
    122 schema:name Physical Research Laboratory, Navrangpura, 380 009, Ahmedabad, India
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...