Lattice QCD with chemical potential: Evading the fermion-sign problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-12

AUTHORS

Sourendu Gupta

ABSTRACT

Since the turn of the millennium there has been tremendous progress in understanding QCD at finite chemical potential, μ. Apart from qualitative results obtained using models, and exact results at very large μ obtained in weak coupling theory, there has been tremendous progress in getting exact and quantitative results from lattice simulations. I summarize the status of lattice QCD at finite chemical potential —locating the critical end-point in the QCD phase diagram, predicting event-to-event fluctuation rates of conserved quantities, and finding the rate of strangeness production. More... »

PAGES

1211-1224

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02704891

DOI

http://dx.doi.org/10.1007/bf02704891

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041661865


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, India", 
          "id": "http://www.grid.ac/institutes/grid.22401.35", 
          "name": [
            "Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Sourendu", 
        "id": "sg:person.010742101535.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010742101535.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1088/1126-6708/2004/04/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026868808", 
          "https://doi.org/10.1088/1126-6708/2004/04/050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/03/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029149593", 
          "https://doi.org/10.1088/1126-6708/2002/03/014"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-12", 
    "datePublishedReg": "2004-12-01", 
    "description": "Since the turn of the millennium there has been tremendous progress in understanding QCD at finite chemical potential, \u03bc. Apart from qualitative results obtained using models, and exact results at very large \u03bc obtained in weak coupling theory, there has been tremendous progress in getting exact and quantitative results from lattice simulations. I summarize the status of lattice QCD at finite chemical potential \u2014locating the critical end-point in the QCD phase diagram, predicting event-to-event fluctuation rates of conserved quantities, and finding the rate of strangeness production.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02704891", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036186", 
        "issn": [
          "0304-4289", 
          "0973-7111"
        ], 
        "name": "Pramana", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "keywords": [
      "finite chemical potential", 
      "fermion-sign problem", 
      "exact results", 
      "weak coupling theory", 
      "lattice simulations", 
      "chemical potential", 
      "lattice QCD", 
      "QCD", 
      "qualitative results", 
      "coupling theory", 
      "problem", 
      "theory", 
      "quantitative results", 
      "simulations", 
      "QCD phase diagram", 
      "model", 
      "results", 
      "tremendous progress", 
      "diagram", 
      "fluctuation rate", 
      "quantity", 
      "phase diagram", 
      "progress", 
      "potential", 
      "rate", 
      "turn", 
      "events", 
      "status", 
      "production", 
      "millennium", 
      "strangeness production", 
      "event fluctuation rates"
    ], 
    "name": "Lattice QCD with chemical potential: Evading the fermion-sign problem", 
    "pagination": "1211-1224", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041661865"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02704891"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02704891", 
      "https://app.dimensions.ai/details/publication/pub.1041661865"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_387.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02704891"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02704891'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02704891'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02704891'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02704891'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      22 PREDICATES      60 URIs      50 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02704891 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N6985912812004d99b035f3c0ff29209f
4 schema:citation sg:pub.10.1088/1126-6708/2002/03/014
5 sg:pub.10.1088/1126-6708/2004/04/050
6 schema:datePublished 2004-12
7 schema:datePublishedReg 2004-12-01
8 schema:description Since the turn of the millennium there has been tremendous progress in understanding QCD at finite chemical potential, μ. Apart from qualitative results obtained using models, and exact results at very large μ obtained in weak coupling theory, there has been tremendous progress in getting exact and quantitative results from lattice simulations. I summarize the status of lattice QCD at finite chemical potential —locating the critical end-point in the QCD phase diagram, predicting event-to-event fluctuation rates of conserved quantities, and finding the rate of strangeness production.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Na931db6df5d9407d810280d0add82268
13 Naa4c9fd43c384e5595a7a83d5fd55847
14 sg:journal.1036186
15 schema:keywords QCD
16 QCD phase diagram
17 chemical potential
18 coupling theory
19 diagram
20 event fluctuation rates
21 events
22 exact results
23 fermion-sign problem
24 finite chemical potential
25 fluctuation rate
26 lattice QCD
27 lattice simulations
28 millennium
29 model
30 phase diagram
31 potential
32 problem
33 production
34 progress
35 qualitative results
36 quantitative results
37 quantity
38 rate
39 results
40 simulations
41 status
42 strangeness production
43 theory
44 tremendous progress
45 turn
46 weak coupling theory
47 schema:name Lattice QCD with chemical potential: Evading the fermion-sign problem
48 schema:pagination 1211-1224
49 schema:productId Nd74d3bdd123943b7bb214fa0b0fa3f67
50 Nda0e43c4ae024dda9af292c709ce6a9e
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041661865
52 https://doi.org/10.1007/bf02704891
53 schema:sdDatePublished 2022-01-01T18:14
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N53bc193717ce4c4cbf2637232f33b5fd
56 schema:url https://doi.org/10.1007/bf02704891
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N53bc193717ce4c4cbf2637232f33b5fd schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N6985912812004d99b035f3c0ff29209f rdf:first sg:person.010742101535.48
63 rdf:rest rdf:nil
64 Na931db6df5d9407d810280d0add82268 schema:volumeNumber 63
65 rdf:type schema:PublicationVolume
66 Naa4c9fd43c384e5595a7a83d5fd55847 schema:issueNumber 6
67 rdf:type schema:PublicationIssue
68 Nd74d3bdd123943b7bb214fa0b0fa3f67 schema:name doi
69 schema:value 10.1007/bf02704891
70 rdf:type schema:PropertyValue
71 Nda0e43c4ae024dda9af292c709ce6a9e schema:name dimensions_id
72 schema:value pub.1041661865
73 rdf:type schema:PropertyValue
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
78 schema:name Physical Sciences
79 rdf:type schema:DefinedTerm
80 sg:journal.1036186 schema:issn 0304-4289
81 0973-7111
82 schema:name Pramana
83 schema:publisher Springer Nature
84 rdf:type schema:Periodical
85 sg:person.010742101535.48 schema:affiliation grid-institutes:grid.22401.35
86 schema:familyName Gupta
87 schema:givenName Sourendu
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010742101535.48
89 rdf:type schema:Person
90 sg:pub.10.1088/1126-6708/2002/03/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029149593
91 https://doi.org/10.1088/1126-6708/2002/03/014
92 rdf:type schema:CreativeWork
93 sg:pub.10.1088/1126-6708/2004/04/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026868808
94 https://doi.org/10.1088/1126-6708/2004/04/050
95 rdf:type schema:CreativeWork
96 grid-institutes:grid.22401.35 schema:alternateName Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, India
97 schema:name Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, India
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...