Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-11

AUTHORS

A. Bhaumik, S. Samanta, N. K. Mal

ABSTRACT

Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material throughin-situ reduction during impregnation. The samples were characterized by powder XRD, TEM, SEM/EDS, N2 adsorption, FT-IR and UV-visible spectroscopies. Characterization data indicated well-dispersed isolated nanoclusters of (Fe2O3)n, within the internal surface of 2D-hexagonal mesoporous silica structure. No occluded Fe/Fe2O3 crystallites were observed at the external surface of the mesoporous silica nanocomposites. Inorganic mesoporous host, such as hydrophilic silica in the pore walls, directs a physical constraint necessary to prevent the creation of large Fe2O3 agglomerates and enables the formation of nanosized Fe2O3 particles inside the mesopore More... »

PAGES

855-862

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf02704085

DOI

http://dx.doi.org/10.1007/bf02704085

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035639822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700 032, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.417929.0", 
          "name": [
            "Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhaumik", 
        "givenName": "A.", 
        "id": "sg:person.01003032431.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003032431.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700 032, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.417929.0", 
          "name": [
            "Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samanta", 
        "givenName": "S.", 
        "id": "sg:person.011673461475.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011673461475.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dynamic Materials Research Group, National Institute of Advance Science & Technology (AIST), Kansai Center, 1-8-31, 563-8577, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dynamic Materials Research Group, National Institute of Advance Science & Technology (AIST), Kansai Center, 1-8-31, 563-8577, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mal", 
        "givenName": "N. K.", 
        "id": "sg:person.011723250315.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723250315.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/359710a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004442060", 
          "https://doi.org/10.1038/359710a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35084046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042360930", 
          "https://doi.org/10.1038/35084046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370354a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018369978", 
          "https://doi.org/10.1038/370354a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010044830871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018514592", 
          "https://doi.org/10.1023/a:1010044830871"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-11", 
    "datePublishedReg": "2005-11-01", 
    "description": "Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material throughin-situ reduction during impregnation. The samples were characterized by powder XRD, TEM, SEM/EDS, N2 adsorption, FT-IR and UV-visible spectroscopies. Characterization data indicated well-dispersed isolated nanoclusters of (Fe2O3)n, within the internal surface of 2D-hexagonal mesoporous silica structure. No occluded Fe/Fe2O3 crystallites were observed at the external surface of the mesoporous silica nanocomposites. Inorganic mesoporous host, such as hydrophilic silica in the pore walls, directs a physical constraint necessary to prevent the creation of large Fe2O3 agglomerates and enables the formation of nanosized Fe2O3 particles inside the mesopore", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf02704085", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036186", 
        "issn": [
          "0304-4289", 
          "0973-7111"
        ], 
        "name": "Pramana", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "keywords": [
      "large band-gap semiconductor", 
      "Fe/Fe2O3", 
      "nanosized iron oxide", 
      "mesoporous silica structure", 
      "band-gap semiconductors", 
      "SEM/EDS", 
      "mesoporous silica nanocomposites", 
      "internal pores", 
      "pore walls", 
      "silica nanocomposites", 
      "hydrophilic silica", 
      "magnetic devices", 
      "UV-visible spectroscopy", 
      "Fe2O3 agglomerates", 
      "iron oxide nanoparticles", 
      "internal surface", 
      "iron oxide", 
      "FT-IR", 
      "silica structure", 
      "mesoporous silica", 
      "oxide nanoparticles", 
      "characterization data", 
      "external surface", 
      "N2 adsorption", 
      "mesoporous host", 
      "powder XRD", 
      "Fe2O3", 
      "silica", 
      "surface", 
      "nanocomposites", 
      "physical constraints", 
      "agglomerates", 
      "semiconductors", 
      "EDS", 
      "pores", 
      "devices", 
      "XRD", 
      "oxide", 
      "impregnation", 
      "adsorption", 
      "TEM", 
      "nanoparticles", 
      "spectroscopy", 
      "wall", 
      "nanoclusters", 
      "structure", 
      "components", 
      "formation", 
      "reduction", 
      "constraints", 
      "samples", 
      "essential component", 
      "creation", 
      "data", 
      "host", 
      "restricted internal pores", 
      "mesoporous silica material throughin-situ reduction", 
      "silica material throughin-situ reduction", 
      "material throughin-situ reduction", 
      "throughin-situ reduction", 
      "isolated nanoclusters", 
      "Inorganic mesoporous host", 
      "large Fe2O3 agglomerates", 
      "mesopore Iron oxide nanoparticles"
    ], 
    "name": "Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica", 
    "pagination": "855-862", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035639822"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf02704085"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf02704085", 
      "https://app.dimensions.ai/details/publication/pub.1035639822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_403.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf02704085"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf02704085'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf02704085'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf02704085'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf02704085'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      94 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf02704085 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N1dcfa6e0f690405bbe60401360a72280
4 schema:citation sg:pub.10.1023/a:1010044830871
5 sg:pub.10.1038/35084046
6 sg:pub.10.1038/359710a0
7 sg:pub.10.1038/370354a0
8 schema:datePublished 2005-11
9 schema:datePublishedReg 2005-11-01
10 schema:description Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material throughin-situ reduction during impregnation. The samples were characterized by powder XRD, TEM, SEM/EDS, N2 adsorption, FT-IR and UV-visible spectroscopies. Characterization data indicated well-dispersed isolated nanoclusters of (Fe2O3)n, within the internal surface of 2D-hexagonal mesoporous silica structure. No occluded Fe/Fe2O3 crystallites were observed at the external surface of the mesoporous silica nanocomposites. Inorganic mesoporous host, such as hydrophilic silica in the pore walls, directs a physical constraint necessary to prevent the creation of large Fe2O3 agglomerates and enables the formation of nanosized Fe2O3 particles inside the mesopore
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N68712db41d224494b22204b3b18ebc36
15 N6966b1810fa74c1585f7e7e74afd1ace
16 sg:journal.1036186
17 schema:keywords EDS
18 FT-IR
19 Fe/Fe2O3
20 Fe2O3
21 Fe2O3 agglomerates
22 Inorganic mesoporous host
23 N2 adsorption
24 SEM/EDS
25 TEM
26 UV-visible spectroscopy
27 XRD
28 adsorption
29 agglomerates
30 band-gap semiconductors
31 characterization data
32 components
33 constraints
34 creation
35 data
36 devices
37 essential component
38 external surface
39 formation
40 host
41 hydrophilic silica
42 impregnation
43 internal pores
44 internal surface
45 iron oxide
46 iron oxide nanoparticles
47 isolated nanoclusters
48 large Fe2O3 agglomerates
49 large band-gap semiconductor
50 magnetic devices
51 material throughin-situ reduction
52 mesopore Iron oxide nanoparticles
53 mesoporous host
54 mesoporous silica
55 mesoporous silica material throughin-situ reduction
56 mesoporous silica nanocomposites
57 mesoporous silica structure
58 nanoclusters
59 nanocomposites
60 nanoparticles
61 nanosized iron oxide
62 oxide
63 oxide nanoparticles
64 physical constraints
65 pore walls
66 pores
67 powder XRD
68 reduction
69 restricted internal pores
70 samples
71 semiconductors
72 silica
73 silica material throughin-situ reduction
74 silica nanocomposites
75 silica structure
76 spectroscopy
77 structure
78 surface
79 throughin-situ reduction
80 wall
81 schema:name Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica
82 schema:pagination 855-862
83 schema:productId N40991dd45c074279a9561d760cc41107
84 N6935e94c2c75401395f298fbb5809c25
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035639822
86 https://doi.org/10.1007/bf02704085
87 schema:sdDatePublished 2021-12-01T19:17
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nd013ca8f117b416d99564775f2b01c77
90 schema:url https://doi.org/10.1007/bf02704085
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N1dcfa6e0f690405bbe60401360a72280 rdf:first sg:person.01003032431.02
95 rdf:rest N6f35a203086943999dd118c7e47fc7e8
96 N40991dd45c074279a9561d760cc41107 schema:name dimensions_id
97 schema:value pub.1035639822
98 rdf:type schema:PropertyValue
99 N68712db41d224494b22204b3b18ebc36 schema:issueNumber 5
100 rdf:type schema:PublicationIssue
101 N6935e94c2c75401395f298fbb5809c25 schema:name doi
102 schema:value 10.1007/bf02704085
103 rdf:type schema:PropertyValue
104 N6966b1810fa74c1585f7e7e74afd1ace schema:volumeNumber 65
105 rdf:type schema:PublicationVolume
106 N6f35a203086943999dd118c7e47fc7e8 rdf:first sg:person.011673461475.00
107 rdf:rest Nae246870a3dc4e599ab4a0a1eb0283ab
108 Nae246870a3dc4e599ab4a0a1eb0283ab rdf:first sg:person.011723250315.36
109 rdf:rest rdf:nil
110 Nd013ca8f117b416d99564775f2b01c77 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Sciences
117 rdf:type schema:DefinedTerm
118 sg:journal.1036186 schema:issn 0304-4289
119 0973-7111
120 schema:name Pramana
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.01003032431.02 schema:affiliation grid-institutes:grid.417929.0
124 schema:familyName Bhaumik
125 schema:givenName A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003032431.02
127 rdf:type schema:Person
128 sg:person.011673461475.00 schema:affiliation grid-institutes:grid.417929.0
129 schema:familyName Samanta
130 schema:givenName S.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011673461475.00
132 rdf:type schema:Person
133 sg:person.011723250315.36 schema:affiliation grid-institutes:None
134 schema:familyName Mal
135 schema:givenName N. K.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723250315.36
137 rdf:type schema:Person
138 sg:pub.10.1023/a:1010044830871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018514592
139 https://doi.org/10.1023/a:1010044830871
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/35084046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042360930
142 https://doi.org/10.1038/35084046
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/359710a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004442060
145 https://doi.org/10.1038/359710a0
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/370354a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018369978
148 https://doi.org/10.1038/370354a0
149 rdf:type schema:CreativeWork
150 grid-institutes:None schema:alternateName Dynamic Materials Research Group, National Institute of Advance Science & Technology (AIST), Kansai Center, 1-8-31, 563-8577, Osaka, Japan
151 schema:name Dynamic Materials Research Group, National Institute of Advance Science & Technology (AIST), Kansai Center, 1-8-31, 563-8577, Osaka, Japan
152 rdf:type schema:Organization
153 grid-institutes:grid.417929.0 schema:alternateName Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700 032, Kolkata, India
154 schema:name Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700 032, Kolkata, India
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...